BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 23768993)

  • 1. Guidelines for biomonitoring persistent organic pollutants (POPs), using lichens and aquatic mosses--a review.
    Augusto S; Máguas C; Branquinho C
    Environ Pollut; 2013 Sep; 180():330-8. PubMed ID: 23768993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application.
    Wu Q; Wang X; Zhou Q
    Environ Int; 2014 May; 66():28-37. PubMed ID: 24518433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review.
    Harmens H; Foan L; Simon V; Mills G
    Environ Pollut; 2013 Feb; 173():245-54. PubMed ID: 23202982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporal change of the accumulation of persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) in lichens in Switzerland between 1995 and 2014.
    Herzig R; Lohmann N; Meier R
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):10562-10575. PubMed ID: 30762185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A critical review on plant biomonitors for determination of polycyclic aromatic hydrocarbons (PAHs) in air through solvent extraction techniques.
    Mukhopadhyay S; Dutta R; Das P
    Chemosphere; 2020 Jul; 251():126441. PubMed ID: 32443242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of organic matter content and human activities on the occurrence of organic pollutants in antarctic soils, lichens, grass, and mosses.
    Cabrerizo A; Dachs J; Barceló D; Jones KC
    Environ Sci Technol; 2012 Feb; 46(3):1396-405. PubMed ID: 22243336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of vegetation, bees, and snails as important tools for the biomonitoring of atmospheric pollution-a review.
    Al-Alam J; Chbani A; Faljoun Z; Millet M
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):9391-9408. PubMed ID: 30715709
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monitoring temporal trends of air pollution in an urban area using mosses and lichens as biomonitors.
    Gerdol R; Marchesini R; Iacumin P; Brancaleoni L
    Chemosphere; 2014 Aug; 108():388-95. PubMed ID: 24630254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moss and lichen biomonitoring of atmospheric mercury: A review.
    Bargagli R
    Sci Total Environ; 2016 Dec; 572():216-231. PubMed ID: 27501421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative use of lichens, mosses and tree bark to evaluate nitrogen deposition in Germany.
    Boltersdorf SH; Pesch R; Werner W
    Environ Pollut; 2014 Jun; 189():43-53. PubMed ID: 24631972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aspects of the biomonitoring studies using mosses and lichens as indicators of metal pollution.
    Szczepaniak K; Biziuk M
    Environ Res; 2003 Nov; 93(3):221-30. PubMed ID: 14615231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Declining trends of PCDD/Fs in lichens over a decade in a Mediterranean area with multiple pollution sources.
    Augusto S; Pinho P; Santos A; Botelho MJ; Palma-Oliveira J; Branquinho C
    Sci Total Environ; 2015 Mar; 508():95-100. PubMed ID: 25459753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative studies of metal air pollution by atomic spectrometry techniques and biomonitoring with moss and lichens.
    State G; Popescu IV; Radulescu C; Macris C; Stihi C; Gheboianu A; Dulama I; Niţescu O
    Bull Environ Contam Toxicol; 2012 Sep; 89(3):580-6. PubMed ID: 22760846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding the performance of different lichen species as biomonitors of atmospheric dioxins and furans: potential for intercalibration.
    Augusto S; Máguas C; Branquinho C
    Ecotoxicology; 2009 Nov; 18(8):1036-42. PubMed ID: 19590956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Air quality assessment in different environmental scenarios by the determination of typical heavy metals and Persistent Organic Pollutants in native lichen Xanthoria parietina.
    Vitali M; Antonucci A; Owczarek M; Guidotti M; Astolfi ML; Manigrasso M; Avino P; Bhattacharya B; Protano C
    Environ Pollut; 2019 Nov; 254(Pt A):113013. PubMed ID: 31415978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomonitoring of environmental pollution in the vicinity of iron and steel smelters in southwestern Nigeria using transplanted lichens and mosses.
    Olise FS; Ogundele LT; Olajire MA; Owoade OK; Oloyede FA; Fawole OG; Ezeh GC
    Environ Monit Assess; 2019 Oct; 191(11):691. PubMed ID: 31667628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Persistent organic pollutants and polycyclic aromatic hydrocarbons in mosses after fire at the Brazilian Antarctic Station.
    Colabuono FI; Taniguchi S; Cipro CV; da Silva J; Bícego MC; Montone RC
    Mar Pollut Bull; 2015 Apr; 93(1-2):266-9. PubMed ID: 25666973
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of lichens as pollution biomonitors in remote areas: comparison of PAhs extracted from lichens and atmospheric particles sampled in and around the Somport tunnel (Pyrenees).
    Blasco M; Domeño C; Nerín C
    Environ Sci Technol; 2006 Oct; 40(20):6384-91. PubMed ID: 17120569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The contribution of environmental biomonitoring with lichens to assess human exposure to dioxins.
    Augusto S; Pereira MJ; Soares A; Branquinho C
    Int J Hyg Environ Health; 2007 May; 210(3-4):433-8. PubMed ID: 17321205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. What potential do mosses have as biomonitors of POPs? A comparative study of hexachlorocyclohexane sorption.
    Chaos Z; Fernández JA; Balseiro-Romero M; Celeiro M; García-Jares C; Méndez A; Pérez-Alonso P; Estébanez B; Kaal J; Nierop KGJ; Aboal JR; Monterroso C
    Sci Total Environ; 2024 Jul; 934():173021. PubMed ID: 38740203
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.