These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
205 related articles for article (PubMed ID: 23769018)
1. Macroporosity enhances vascularization of electrospun scaffolds. Joshi VS; Lei NY; Walthers CM; Wu B; Dunn JC J Surg Res; 2013 Jul; 183(1):18-26. PubMed ID: 23769018 [TBL] [Abstract][Full Text] [Related]
2. Increasing the pore size of electrospun scaffolds. Rnjak-Kovacina J; Weiss AS Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802 [TBL] [Abstract][Full Text] [Related]
3. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration. Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462 [TBL] [Abstract][Full Text] [Related]
4. Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures. Leong MF; Chan WY; Chian KS Nanomedicine (Lond); 2013 Apr; 8(4):555-66. PubMed ID: 23560407 [TBL] [Abstract][Full Text] [Related]
5. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo. Pu J; Yuan F; Li S; Komvopoulos K Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495 [TBL] [Abstract][Full Text] [Related]
6. Gradient porous fibrous scaffolds: a novel approach to improving cell penetration in electrospun scaffolds. Timnak A; Gerstenhaber JA; Dong K; Har-El YE; Lelkes PI Biomed Mater; 2018 Sep; 13(6):065010. PubMed ID: 30129563 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review. Zhong S; Zhang Y; Lim CT Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623 [TBL] [Abstract][Full Text] [Related]
8. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124 [TBL] [Abstract][Full Text] [Related]
9. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration. Zander NE; Orlicki JA; Rawlett AM; Beebe TP J Mater Sci Mater Med; 2013 Jan; 24(1):179-87. PubMed ID: 23053801 [TBL] [Abstract][Full Text] [Related]
10. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique. Leong MF; Rasheed MZ; Lim TC; Chian KS J Biomed Mater Res A; 2009 Oct; 91(1):231-40. PubMed ID: 18814222 [TBL] [Abstract][Full Text] [Related]
11. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering. Zhu X; Cui W; Li X; Jin Y Biomacromolecules; 2008 Jul; 9(7):1795-801. PubMed ID: 18578495 [TBL] [Abstract][Full Text] [Related]
12. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering. Wright LD; Young RT; Andric T; Freeman JW Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321 [TBL] [Abstract][Full Text] [Related]
13. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294 [TBL] [Abstract][Full Text] [Related]
14. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs. Mahjour SB; Sefat F; Polunin Y; Wang L; Wang H J Biomed Mater Res A; 2016 Jun; 104(6):1479-88. PubMed ID: 26845076 [TBL] [Abstract][Full Text] [Related]
15. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering. Lin W; Chen M; Qu T; Li J; Man Y J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374 [TBL] [Abstract][Full Text] [Related]
16. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration. Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961 [TBL] [Abstract][Full Text] [Related]
17. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle. Walthers CM; Nazemi AK; Patel SL; Wu BM; Dunn JC Biomaterials; 2014 Jun; 35(19):5129-37. PubMed ID: 24695092 [TBL] [Abstract][Full Text] [Related]
18. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth. Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901 [TBL] [Abstract][Full Text] [Related]
19. Applications of electrospun scaffolds with enlarged pores in tissue engineering. Zhang Y; Zhang M; Cheng D; Xu S; Du C; Xie L; Zhao W Biomater Sci; 2022 Mar; 10(6):1423-1447. PubMed ID: 35170597 [TBL] [Abstract][Full Text] [Related]
20. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber. Hodge JG; Quint C J Biomater Appl; 2022 Jul; 37(1):77-88. PubMed ID: 35317691 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]