BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 23769018)

  • 1. Macroporosity enhances vascularization of electrospun scaffolds.
    Joshi VS; Lei NY; Walthers CM; Wu B; Dunn JC
    J Surg Res; 2013 Jul; 183(1):18-26. PubMed ID: 23769018
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Increasing the pore size of electrospun scaffolds.
    Rnjak-Kovacina J; Weiss AS
    Tissue Eng Part B Rev; 2011 Oct; 17(5):365-72. PubMed ID: 21815802
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing the pore sizes of bone-mimetic electrospun scaffolds comprised of polycaprolactone, collagen I and hydroxyapatite to enhance cell infiltration.
    Phipps MC; Clem WC; Grunda JM; Clines GA; Bellis SL
    Biomaterials; 2012 Jan; 33(2):524-34. PubMed ID: 22014462
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cryogenic electrospinning: proposed mechanism, process parameters and its use in engineering of bilayered tissue structures.
    Leong MF; Chan WY; Chian KS
    Nanomedicine (Lond); 2013 Apr; 8(4):555-66. PubMed ID: 23560407
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun bilayer fibrous scaffolds for enhanced cell infiltration and vascularization in vivo.
    Pu J; Yuan F; Li S; Komvopoulos K
    Acta Biomater; 2015 Feb; 13():131-41. PubMed ID: 25463495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gradient porous fibrous scaffolds: a novel approach to improving cell penetration in electrospun scaffolds.
    Timnak A; Gerstenhaber JA; Dong K; Har-El YE; Lelkes PI
    Biomed Mater; 2018 Sep; 13(6):065010. PubMed ID: 30129563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review.
    Zhong S; Zhang Y; Lim CT
    Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun polycaprolactone scaffolds with tailored porosity using two approaches for enhanced cellular infiltration.
    Zander NE; Orlicki JA; Rawlett AM; Beebe TP
    J Mater Sci Mater Med; 2013 Jan; 24(1):179-87. PubMed ID: 23053801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro cell infiltration and in vivo cell infiltration and vascularization in a fibrous, highly porous poly(D,L-lactide) scaffold fabricated by cryogenic electrospinning technique.
    Leong MF; Rasheed MZ; Lim TC; Chian KS
    J Biomed Mater Res A; 2009 Oct; 91(1):231-40. PubMed ID: 18814222
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrospun fibrous mats with high porosity as potential scaffolds for skin tissue engineering.
    Zhu X; Cui W; Li X; Jin Y
    Biomacromolecules; 2008 Jul; 9(7):1795-801. PubMed ID: 18578495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication and mechanical characterization of 3D electrospun scaffolds for tissue engineering.
    Wright LD; Young RT; Andric T; Freeman JW
    Biomed Mater; 2010 Oct; 5(5):055006. PubMed ID: 20844321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering.
    Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs.
    Mahjour SB; Sefat F; Polunin Y; Wang L; Wang H
    J Biomed Mater Res A; 2016 Jun; 104(6):1479-88. PubMed ID: 26845076
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional electrospun nanofibrous scaffolds for bone tissue engineering.
    Lin W; Chen M; Qu T; Li J; Man Y
    J Biomed Mater Res B Appl Biomater; 2020 May; 108(4):1311-1321. PubMed ID: 31436374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of thick fibers and large pores of electrospun poly(ε-caprolactone) vascular grafts on macrophage polarization and arterial regeneration.
    Wang Z; Cui Y; Wang J; Yang X; Wu Y; Wang K; Gao X; Li D; Li Y; Zheng XL; Zhu Y; Kong D; Zhao Q
    Biomaterials; 2014 Jul; 35(22):5700-10. PubMed ID: 24746961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle.
    Walthers CM; Nazemi AK; Patel SL; Wu BM; Dunn JC
    Biomaterials; 2014 Jun; 35(19):5129-37. PubMed ID: 24695092
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual electrospinning with sacrificial fibers for engineered porosity and enhancement of tissue ingrowth.
    Voorneveld J; Oosthuysen A; Franz T; Zilla P; Bezuidenhout D
    J Biomed Mater Res B Appl Biomater; 2017 Aug; 105(6):1559-1572. PubMed ID: 27125901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of electrospun scaffolds with enlarged pores in tissue engineering.
    Zhang Y; Zhang M; Cheng D; Xu S; Du C; Xie L; Zhao W
    Biomater Sci; 2022 Mar; 10(6):1423-1447. PubMed ID: 35170597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved porosity of electrospun poly (Lactic-Co-Glycolic) scaffolds by sacrificial microparticles enhances cellular infiltration compared to sacrificial microfiber.
    Hodge JG; Quint C
    J Biomater Appl; 2022 Jul; 37(1):77-88. PubMed ID: 35317691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.