These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The in vivo relationship between anterior neutral tibial position and loss of knee extension after transtibial ACL reconstruction. Scanlan SF; Donahue JP; Andriacchi TP Knee; 2014 Jan; 21(1):74-9. PubMed ID: 23830645 [TBL] [Abstract][Full Text] [Related]
6. Rate of force application during knee arthrometer testing affects stiffness but not displacement measurements. Gross SM; Carcia CR; Gansneder BM; Shultz SJ J Orthop Sports Phys Ther; 2004 Mar; 34(3):132-9. PubMed ID: 15089026 [TBL] [Abstract][Full Text] [Related]
7. The immediate effects of open kinetic chain knee extensor exercise at different loads on knee anterior laxity in the uninjured. Nicholettos A; Barcellona MG; Morrissey MC Knee; 2013 Dec; 20(6):500-4. PubMed ID: 23159721 [TBL] [Abstract][Full Text] [Related]
8. ACL forces and knee kinematics produced by axial tibial compression during a passive flexion-extension cycle. Markolf KL; Jackson SR; Foster B; McAllister DR J Orthop Res; 2014 Jan; 32(1):89-95. PubMed ID: 23996893 [TBL] [Abstract][Full Text] [Related]
9. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. Mokhtarzadeh H; Yeow CH; Hong Goh JC; Oetomo D; Malekipour F; Lee PV J Biomech; 2013 Jul; 46(11):1913-20. PubMed ID: 23731572 [TBL] [Abstract][Full Text] [Related]
10. Estimation of anterior cruciate ligament tension from inverse dynamics data and electromyography in females during drop landing. Kernozek TW; Ragan RJ Clin Biomech (Bristol); 2008 Dec; 23(10):1279-86. PubMed ID: 18790553 [TBL] [Abstract][Full Text] [Related]
11. New parameters describing how knee ligaments carry force in situ predict interspecimen variations in laxity during simulated clinical exams. Imhauser CW; Kent RN; Boorman-Padgett J; Thein R; Wickiewicz TL; Pearle AD J Biomech; 2017 Nov; 64():212-218. PubMed ID: 29078961 [TBL] [Abstract][Full Text] [Related]
12. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression. Marouane H; Shirazi-Adl A; Adouni M; Hashemi J J Biomech; 2014 Apr; 47(6):1353-9. PubMed ID: 24576586 [TBL] [Abstract][Full Text] [Related]
13. Nonweight-bearing anterior knee laxity is related to anterior tibial translation during transition from nonweight bearing to weight bearing. Shultz SJ; Shimokochi Y; Nguyen AD; Ambegaonkar JP; Schmitz RJ; Beynnon BD; Perrin DH J Orthop Res; 2006 Mar; 24(3):516-23. PubMed ID: 16456828 [TBL] [Abstract][Full Text] [Related]
14. Comparison of estimated anterior cruciate ligament tension during a typical and flexed knee and hip drop landing using sagittal plane knee modeling. Southard J; Kernozek TW; Ragan R; Willson J Int J Sports Med; 2012 May; 33(5):381-5. PubMed ID: 22318556 [TBL] [Abstract][Full Text] [Related]
15. The relationship between anterior tibial shear force during a jump landing task and quadriceps and hamstring strength. Bennett DR; Blackburn JT; Boling MC; McGrath M; Walusz H; Padua DA Clin Biomech (Bristol); 2008 Nov; 23(9):1165-71. PubMed ID: 18599168 [TBL] [Abstract][Full Text] [Related]
16. The effect of an impulsive knee valgus moment on in vitro relative ACL strain during a simulated jump landing. Withrow TJ; Huston LJ; Wojtys EM; Ashton-Miller JA Clin Biomech (Bristol); 2006 Nov; 21(9):977-83. PubMed ID: 16790304 [TBL] [Abstract][Full Text] [Related]
17. The relationship between anterior tibial acceleration, tibial slope, and ACL strain during a simulated jump landing task. McLean SG; Oh YK; Palmer ML; Lucey SM; Lucarelli DG; Ashton-Miller JA; Wojtys EM J Bone Joint Surg Am; 2011 Jul; 93(14):1310-7. PubMed ID: 21792497 [TBL] [Abstract][Full Text] [Related]
18. Relationship of anterior knee laxity to knee translations during drop landings: a bi-plane fluoroscopy study. Torry MR; Myers C; Pennington WW; Shelburne KB; Krong JP; Giphart JE; Steadman JR; Woo SL Knee Surg Sports Traumatol Arthrosc; 2011 Apr; 19(4):653-62. PubMed ID: 21153545 [TBL] [Abstract][Full Text] [Related]
19. Longitudinal measurement of tibial motion relative to the femur during passive displacements in the cat before and after anterior cruciate ligament transection. Maitland ME; Leonard T; Frank CB; Shrive NG; Herzog W J Orthop Res; 1998 Jul; 16(4):448-54. PubMed ID: 9747786 [TBL] [Abstract][Full Text] [Related]
20. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study. Biscarini A; Botti FM; Pettorossi VE Eur J Appl Physiol; 2013 Sep; 113(9):2263-73. PubMed ID: 23670482 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]