BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 23769323)

  • 1. A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A.
    Zhang C; Li Z; Suzuki D; Ye L; Yoshida N; Katayama A
    Chemosphere; 2013 Aug; 92(10):1343-8. PubMed ID: 23769323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an enrichment culture debrominating tetrabromobisphenol A and optimization of its activity under anaerobic conditions.
    Iasur-Kruh L; Ronen Z; Arbeli Z; Nejidat A
    J Appl Microbiol; 2010 Aug; 109(2):707-715. PubMed ID: 20202021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genome-Centric Metatranscriptomic Characterization of a Humin-Facilitated Anaerobic Tetrabromobisphenol A-Dehalogenating Consortium.
    Liu G; Chen K; Wu Z; Ji Y; Lu L; Liu S; Li ZL; Ji R; Liu SJ; Jiang J; Qiao W
    Environ Sci Technol; 2024 Jan; 58(2):1299-1311. PubMed ID: 38113523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene.
    Nelson JL; Fung JM; Cadillo-Quiroz H; Cheng X; Zinder SH
    Environ Sci Technol; 2011 Aug; 45(16):6806-13. PubMed ID: 21732639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complete biodegradation of tetrabromobisphenol A through sequential anaerobic reductive dehalogenation and aerobic oxidation.
    Liu G; Liu S; Yang J; Zhang X; Lu L; Xu H; Ye S; Wu J; Jiang J; Qiao W
    J Hazard Mater; 2024 May; 470():134217. PubMed ID: 38583197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biotransformation of the flame retardant tetrabromobisphenol-A (TBBPA) by freshwater microalgae.
    Peng FQ; Ying GG; Yang B; Liu YS; Lai HJ; Zhou GJ; Chen J; Zhao JL
    Environ Toxicol Chem; 2014 Aug; 33(8):1705-11. PubMed ID: 24687216
    [TBL] [Abstract][Full Text] [Related]  

  • 7. One-step process for debromination and aerobic mineralization of tetrabromobisphenol-A by a novel Ochrobactrum sp. T isolated from an e-waste recycling site.
    An T; Zu L; Li G; Wan S; Mai B; Wong PK
    Bioresour Technol; 2011 Oct; 102(19):9148-54. PubMed ID: 21764300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acetate promotes microbial reductive debromination of tetrabromobisphenol A during the startup phase of anaerobic wastewater sludge bioreactors.
    Lefevre E; Redfern L; Cooper EM; Stapleton HM; Gunsch CK
    Sci Total Environ; 2019 Mar; 656():959-968. PubMed ID: 30625682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical stimulation of microbial reductive dechlorination of pentachlorophenol using solid-state redox mediator (humin) immobilization.
    Zhang D; Zhang C; Li Z; Suzuki D; Komatsu DD; Tsunogai U; Katayama A
    Bioresour Technol; 2014 Jul; 164():232-40. PubMed ID: 24859215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enrichment of a microbial culture capable of reductive debromination of the flame retardant tetrabromobisphenol-A, and identification of the intermediate metabolites produced in the process.
    Arbeli Z; Ronen Z
    Biodegradation; 2003 Dec; 14(6):385-95. PubMed ID: 14669869
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradation of tetrabromobisphenol A by a novel Comamonas sp. strain, JXS-2-02, isolated from anaerobic sludge.
    Peng X; Zhang Z; Luo W; Jia X
    Bioresour Technol; 2013 Jan; 128():173-9. PubMed ID: 23201509
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reductive debromination of tetrabromobisphenol A by Pd/Fe bimetallic catalysts.
    Huang Q; Liu W; Peng P; Huang W
    Chemosphere; 2013 Aug; 92(10):1321-7. PubMed ID: 23791110
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Debromination of TetraBromoBisphenol-A (TBBPA) depicting the metabolic versatility of Dehalococcoides.
    Ramaswamy R; Zhao S; Bae S; He J
    J Hazard Mater; 2021 Oct; 419():126408. PubMed ID: 34174623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degradation and metabolism of tetrabromobisphenol A (TBBPA) in submerged soil and soil-plant systems.
    Sun F; Kolvenbach BA; Nastold P; Jiang B; Ji R; Corvini PF
    Environ Sci Technol; 2014 Dec; 48(24):14291-9. PubMed ID: 25402269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transformation/degradation of tetrabromobisphenol A and its derivatives: A review of the metabolism and metabolites.
    Liu A; Zhao Z; Qu G; Shen Z; Shi J; Jiang G
    Environ Pollut; 2018 Dec; 243(Pt B):1141-1153. PubMed ID: 30261454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Humin as an electron donor for enhancement of multiple microbial reduction reactions with different redox potentials in a consortium.
    Zhang D; Zhang C; Xiao Z; Suzuki D; Katayama A
    J Biosci Bioeng; 2015 Feb; 119(2):188-94. PubMed ID: 25176636
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pathways for the anaerobic microbial debromination of polybrominated diphenyl ethers.
    Robrock KR; Korytár P; Alvarez-Cohen L
    Environ Sci Technol; 2008 Apr; 42(8):2845-52. PubMed ID: 18497133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes.
    Grostern A; Edwards EA
    Appl Environ Microbiol; 2006 Jan; 72(1):428-36. PubMed ID: 16391074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zn dust mediated reductive debromination of tetrabromobisphenol A (TBBPA).
    Liu GB; Zhao HY; Thiemann T
    J Hazard Mater; 2009 Sep; 169(1-3):1150-3. PubMed ID: 19450923
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A switch of chlorinated substrate causes emergence of a previously undetected native Dehalobacter population in an established Dehalococcoides-dominated chloroethene-dechlorinating enrichment culture.
    Puentes Jácome LA; Edwards EA
    FEMS Microbiol Ecol; 2017 Dec; 93(12):. PubMed ID: 29088371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.