These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 23769748)

  • 1. Theoretical estimation of the temperature and pressure within collapsing acoustical bubbles.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2014 Jan; 21(1):53-9. PubMed ID: 23769748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity of free radicals production in acoustically driven bubble to the ultrasonic frequency and nature of dissolved gases.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():41-50. PubMed ID: 25112684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for predicting the number of active bubbles in sonochemical reactors.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Jan; 22():51-8. PubMed ID: 25127247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The size of active bubbles for the production of hydrogen in sonochemical reaction field.
    Merouani S; Hamdaoui O
    Ultrason Sonochem; 2016 Sep; 32():320-327. PubMed ID: 27150777
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimum bubble temperature for the sonochemical production of oxidants.
    Yasui K; Tuziuti T; Iida Y
    Ultrasonics; 2004 Apr; 42(1-9):579-84. PubMed ID: 15047350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and numerical investigation of the effect of liquid temperature on the sonolytic degradation of some organic dyes in water.
    Merouani S; Hamdaoui O; Boutamine Z; Rezgui Y; Guemini M
    Ultrason Sonochem; 2016 Jan; 28():382-392. PubMed ID: 26384922
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of O Radicals from Cavitation Bubbles under Ultrasound.
    Yasui K
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New interpretation of the effects of argon-saturating gas toward sonochemical reactions.
    Merouani S; Ferkous H; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Mar; 23():37-45. PubMed ID: 25304684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Chemical History of a Bubble.
    Suslick KS; Eddingsaas NC; Flannigan DJ; Hopkins SD; Xu H
    Acc Chem Res; 2018 Sep; 51(9):2169-2178. PubMed ID: 29771111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of single-bubble sonochemistry.
    Yasui K; Tuziuti T; Sivakumar M; Iida Y
    J Chem Phys; 2005 Jun; 122(22):224706. PubMed ID: 15974702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive experimental and numerical investigations of the effect of frequency and acoustic intensity on the sonolytic degradation of naphthol blue black in water.
    Ferkous H; Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2015 Sep; 26():30-39. PubMed ID: 25753313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insight into the impact of excluding mass transport, heat exchange and chemical reactions heat on the sonochemical bubble yield: Bubble size-dependency.
    Dehane A; Merouani S; Hamdaoui O; Alghyamah A
    Ultrason Sonochem; 2021 May; 73():105511. PubMed ID: 33812247
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dependence of the characteristics of bubbles on types of sonochemical reactors.
    Yasui K; Tuziuti T; Iida Y
    Ultrason Sonochem; 2005 Jan; 12(1-2):43-51. PubMed ID: 15474951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between the bubble temperature and main oxidant created inside an air bubble under ultrasound.
    Yasui K; Tuziuti T; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2007 Oct; 127(15):154502. PubMed ID: 17949168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions.
    Yasui K; Tuziuti T; Lee J; Kozuka T; Towata A; Iida Y
    J Chem Phys; 2008 May; 128(18):184705. PubMed ID: 18532834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of OH radical production from ozone bubbles in water after stopping cavitation.
    Yasui K; Tuziuti T; Kanematsu W
    Ultrason Sonochem; 2019 Nov; 58():104707. PubMed ID: 31450352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis.
    Peng K; Qin FGF; Jiang R; Kang S
    Ultrason Sonochem; 2020 Dec; 69():105253. PubMed ID: 32731127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of static pressure on acoustic energy radiated by cavitation bubbles in viscous liquids under ultrasound.
    Yasui K; Towata A; Tuziuti T; Kozuka T; Kato K
    J Acoust Soc Am; 2011 Nov; 130(5):3233-42. PubMed ID: 22087995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.
    Merouani S; Hamdaoui O; Rezgui Y; Guemini M
    Ultrason Sonochem; 2013 May; 20(3):815-9. PubMed ID: 23187064
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling the effect of carbon-dioxide gas on cavitation.
    Gireesan S; Pandit AB
    Ultrason Sonochem; 2017 Jan; 34():721-728. PubMed ID: 27773299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.