These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23769861)

  • 1. Animal models for vascular tissue-engineering.
    Swartz DD; Andreadis ST
    Curr Opin Biotechnol; 2013 Oct; 24(5):916-25. PubMed ID: 23769861
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioengineered blood vessels.
    Niu G; Sapoznik E; Soker S
    Expert Opin Biol Ther; 2014 Apr; 14(4):403-10. PubMed ID: 24460430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Performance of Decellularized Vascular Grafts: A Review Article.
    Lin CH; Hsia K; Ma H; Lee H; Lu JH
    Int J Mol Sci; 2018 Jul; 19(7):. PubMed ID: 30029536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering of fibrin-based functional and implantable small-diameter blood vessels.
    Swartz DD; Russell JA; Andreadis ST
    Am J Physiol Heart Circ Physiol; 2005 Mar; 288(3):H1451-60. PubMed ID: 15486037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small-diameter vascular tissue engineering.
    Seifu DG; Purnama A; Mequanint K; Mantovani D
    Nat Rev Cardiol; 2013 Jul; 10(7):410-21. PubMed ID: 23689702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Animal models of cardiovascular disease as test beds of bioengineered vascular grafts.
    Row S; Swartz DD; Andreadis ST
    Drug Discov Today Dis Models; 2017; 24():37-45. PubMed ID: 30505334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiovascular tissue engineering: state of the art.
    Vara DS; Salacinski HJ; Kannan RY; Bordenave L; Hamilton G; Seifalian AM
    Pathol Biol (Paris); 2005 Dec; 53(10):599-612. PubMed ID: 16364812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering blood vessels by gene and cell therapy.
    Zarbiv G; Preis M; Ben-Yosef Y; Flugelman MY
    Expert Opin Biol Ther; 2007 Aug; 7(8):1183-91. PubMed ID: 17696817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Considerations in the Development of Small-Diameter Vascular Graft as an Alternative for Bypass and Reconstructive Surgeries: A Review.
    Obiweluozor FO; Emechebe GA; Kim DW; Cho HJ; Park CH; Kim CS; Jeong IS
    Cardiovasc Eng Technol; 2020 Oct; 11(5):495-521. PubMed ID: 32812139
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomaterials for vascular tissue engineering.
    Ravi S; Chaikof EL
    Regen Med; 2010 Jan; 5(1):107-20. PubMed ID: 20017698
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review of Vascular Graft Studies in Large Animal Models.
    Liu RH; Ong CS; Fukunishi T; Ong K; Hibino N
    Tissue Eng Part B Rev; 2018 Apr; 24(2):133-143. PubMed ID: 28978267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioengineered vascular graft grown in the mouse peritoneal cavity.
    Song L; Wang L; Shah PK; Chaux A; Sharifi BG
    J Vasc Surg; 2010 Oct; 52(4):994-1002, 1002.e1-2. PubMed ID: 20692791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-term patency of small-diameter vascular graft made from fibroin, a silk-based biodegradable material.
    Enomoto S; Sumi M; Kajimoto K; Nakazawa Y; Takahashi R; Takabayashi C; Asakura T; Sata M
    J Vasc Surg; 2010 Jan; 51(1):155-64. PubMed ID: 19954921
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tissue-engineered blood vessels: alternative to autologous grafts?
    Hoenig MR; Campbell GR; Rolfe BE; Campbell JH
    Arterioscler Thromb Vasc Biol; 2005 Jun; 25(6):1128-34. PubMed ID: 15705929
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing the Foreign Body Response to Grow Tissue Engineered Blood Vessels in Vivo.
    Geelhoed WJ; Moroni L; Rotmans JI
    J Cardiovasc Transl Res; 2017 Apr; 10(2):167-179. PubMed ID: 28205013
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrospun nanofiber scaffold for vascular tissue engineering.
    Rickel AP; Deng X; Engebretson D; Hong Z
    Mater Sci Eng C Mater Biol Appl; 2021 Oct; 129():112373. PubMed ID: 34579892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Factorial design optimization and in vivo feasibility of poly(epsilon-caprolactone)-micro- and nanofiber-based small diameter vascular grafts.
    Nottelet B; Pektok E; Mandracchia D; Tille JC; Walpoth B; Gurny R; Möller M
    J Biomed Mater Res A; 2009 Jun; 89(4):865-75. PubMed ID: 18465817
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preclinical studies of acellular extracellular matrices as small-caliber vascular grafts.
    Ilanlou S; Khakbiz M; Amoabediny G; Mohammadi J
    Tissue Cell; 2019 Oct; 60():25-32. PubMed ID: 31582015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving small-diameter vascular grafts: from the application of an endothelial cell lining to the construction of a tissue-engineered blood vessel.
    Heyligers JM; Arts CH; Verhagen HJ; de Groot PG; Moll FL
    Ann Vasc Surg; 2005 May; 19(3):448-56. PubMed ID: 15864472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of patency of synthetic and autogenous venous and arterial micrografts in rats.
    Musella RA; Willey EN
    Microsurgery; 1985; 6(2):85-91. PubMed ID: 4021791
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.