BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23769944)

  • 1. Nodal: master and commander of the dorsal-ventral and left-right axes in the sea urchin embryo.
    Molina MD; de Crozé N; Haillot E; Lepage T
    Curr Opin Genet Dev; 2013 Aug; 23(4):445-53. PubMed ID: 23769944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A conserved role for the nodal signaling pathway in the establishment of dorso-ventral and left-right axes in deuterostomes.
    Duboc V; Lepage T
    J Exp Zool B Mol Dev Evol; 2008 Jan; 310(1):41-53. PubMed ID: 16838294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nodal and BMP2/4 pattern the mesoderm and endoderm during development of the sea urchin embryo.
    Duboc V; Lapraz F; Saudemont A; Bessodes N; Mekpoh F; Haillot E; Quirin M; Lepage T
    Development; 2010 Jan; 137(2):223-35. PubMed ID: 20040489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterning of the dorsal-ventral axis in echinoderms: insights into the evolution of the BMP-chordin signaling network.
    Lapraz F; Besnardeau L; Lepage T
    PLoS Biol; 2009 Nov; 7(11):e1000248. PubMed ID: 19956794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maternal Oct1/2 is required for Nodal and Vg1/Univin expression during dorsal-ventral axis specification in the sea urchin embryo.
    Range R; Lepage T
    Dev Biol; 2011 Sep; 357(2):440-9. PubMed ID: 21782809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposing nodal and BMP signals regulate left-right asymmetry in the sea urchin larva.
    Luo YJ; Su YH
    PLoS Biol; 2012; 10(10):e1001402. PubMed ID: 23055827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nodal and BMP2/4 signaling organizes the oral-aboral axis of the sea urchin embryo.
    Duboc V; Röttinger E; Besnardeau L; Lepage T
    Dev Cell; 2004 Mar; 6(3):397-410. PubMed ID: 15030762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Left-right asymmetry in the sea urchin embryo is regulated by nodal signaling on the right side.
    Duboc V; Röttinger E; Lapraz F; Besnardeau L; Lepage T
    Dev Cell; 2005 Jul; 9(1):147-58. PubMed ID: 15992548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. FGF signals guide migration of mesenchymal cells, control skeletal morphogenesis [corrected] and regulate gastrulation during sea urchin development.
    Röttinger E; Saudemont A; Duboc V; Besnardeau L; McClay D; Lepage T
    Development; 2008 Jan; 135(2):353-65. PubMed ID: 18077587
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal factors regulating symmetry breaking and dorsal-ventral axis formation in the sea urchin embryo.
    Molina MD; Lepage T
    Curr Top Dev Biol; 2020; 140():283-316. PubMed ID: 32591077
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Telling left from right: left-right asymmetric controls in sea urchins.
    Su YH
    Genesis; 2014 Mar; 52(3):269-78. PubMed ID: 24395739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oral-aboral patterning and gastrulation of sea urchin embryos depend on sulfated glycosaminoglycans.
    Bergeron KF; Xu X; Brandhorst BP
    Mech Dev; 2011; 128(1-2):71-89. PubMed ID: 21056656
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nodal expression and heterochrony in the evolution of dorsal-ventral and left-right axes formation in the direct-developing sea urchin Heliocidaris erythrogramma.
    Smith MS; Turner FR; Raff RA
    J Exp Zool B Mol Dev Evol; 2008 Dec; 310(8):609-22. PubMed ID: 18702078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nodal and BMP expression during the transition to pentamery in the sea urchin Heliocidaris erythrogramma: insights into patterning the enigmatic echinoderm body plan.
    Koop D; Cisternas P; Morris VB; Strbenac D; Yang JY; Wray GA; Byrne M
    BMC Dev Biol; 2017 Feb; 17(1):4. PubMed ID: 28193178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deciphering and modelling the TGF-β signalling interplays specifying the dorsal-ventral axis of the sea urchin embryo.
    Floc'hlay S; Molina MD; Hernandez C; Haillot E; Thomas-Chollier M; Lepage T; Thieffry D
    Development; 2021 Jan; 148(2):. PubMed ID: 33298464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dorsal-ventral axis formation in sea urchin embryos.
    Su YH
    Curr Top Dev Biol; 2022; 146():183-210. PubMed ID: 35152983
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coup-TF: A maternal factor essential for differentiation along the embryonic axes in the sea urchin Paracentrotus lividus.
    Tsironis I; Paganos P; Gouvi G; Tsimpos P; Stamopoulou A; Arnone MI; Flytzanis CN
    Dev Biol; 2021 Jul; 475():131-144. PubMed ID: 33484706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cis-regulatory analysis of nodal and maternal control of dorsal-ventral axis formation by Univin, a TGF-beta related to Vg1.
    Range R; Lapraz F; Quirin M; Marro S; Besnardeau L; Lepage T
    Development; 2007 Oct; 134(20):3649-64. PubMed ID: 17855430
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transcriptomic analysis of Nodal- and BMP-associated genes during juvenile development of the sea urchin Heliocidaris erythrogramma.
    Byrne M; Koop D; Cisternas P; Strbenac D; Yang JY; Wray GA
    Mar Genomics; 2015 Dec; 24 Pt 1():41-5. PubMed ID: 26066611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lefty acts as an essential modulator of Nodal activity during sea urchin oral-aboral axis formation.
    Duboc V; Lapraz F; Besnardeau L; Lepage T
    Dev Biol; 2008 Aug; 320(1):49-59. PubMed ID: 18582858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.