BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 23769944)

  • 21. Sp-Smad2/3 mediates patterning of neurogenic ectoderm by nodal in the sea urchin embryo.
    Yaguchi S; Yaguchi J; Burke RD
    Dev Biol; 2007 Feb; 302(2):494-503. PubMed ID: 17101124
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Respecification of ectoderm and altered Nodal expression in sea urchin embryos after cobalt and nickel treatment.
    Agca C; Klein WH; Venuti JM
    Mech Dev; 2009; 126(5-6):430-42. PubMed ID: 19368800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zygotic LvBMP5-8 is required for skeletal patterning and for left-right but not dorsal-ventral specification in the sea urchin embryo.
    Piacentino ML; Chung O; Ramachandran J; Zuch DT; Yu J; Conaway EA; Reyna AE; Bradham CA
    Dev Biol; 2016 Apr; 412(1):44-56. PubMed ID: 26905309
    [TBL] [Abstract][Full Text] [Related]  

  • 24. MAPK and GSK3/ß-TRCP-mediated degradation of the maternal Ets domain transcriptional repressor Yan/Tel controls the spatial expression of nodal in the sea urchin embryo.
    Molina MD; Quirin M; Haillot E; De Crozé N; Range R; Rouel M; Jimenez F; Amrouche R; Chessel A; Lepage T
    PLoS Genet; 2018 Sep; 14(9):e1007621. PubMed ID: 30222786
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Maternal Maverick/GDF15-like TGF-β Ligand Panda Directs Dorsal-Ventral Axis Formation by Restricting Nodal Expression in the Sea Urchin Embryo.
    Haillot E; Molina MD; Lapraz F; Lepage T
    PLoS Biol; 2015; 13(9):e1002247. PubMed ID: 26352141
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Running the gauntlet: an overview of the modalities of travel employed by the putative morphogen Nodal.
    Constam DB
    Curr Opin Genet Dev; 2009 Aug; 19(4):302-7. PubMed ID: 19631522
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reciprocal signaling between the ectoderm and a mesendodermal left-right organizer directs left-right determination in the sea urchin embryo.
    Bessodes N; Haillot E; Duboc V; Röttinger E; Lahaye F; Lepage T
    PLoS Genet; 2012; 8(12):e1003121. PubMed ID: 23271979
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A computational model for BMP movement in sea urchin embryos.
    van Heijster P; Hardway H; Kaper TJ; Bradham CA
    J Theor Biol; 2014 Dec; 363():277-89. PubMed ID: 25167787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nodal/activin signaling establishes oral-aboral polarity in the early sea urchin embryo.
    Flowers VL; Courteau GR; Poustka AJ; Weng W; Venuti JM
    Dev Dyn; 2004 Dec; 231(4):727-40. PubMed ID: 15517584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. BMP inhibition by DAN in Hensen's node is a critical step for the establishment of left-right asymmetry in the chick embryo.
    Katsu K; Tokumori D; Tatsumi N; Suzuki A; Yokouchi Y
    Dev Biol; 2012 Mar; 363(1):15-26. PubMed ID: 22202776
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ectopic hbox12 Expression Evoked by Histone Deacetylase Inhibition Disrupts Axial Specification of the Sea Urchin Embryo.
    Cavalieri V; Spinelli G
    PLoS One; 2015; 10(11):e0143860. PubMed ID: 26618749
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inversion of left-right asymmetry in the formation of the adult rudiment in sea urchin larvae: removal of a part of embryos at the gastrula stage.
    Aihara M; Amemiya S
    Zygote; 2000; 8 Suppl 1():S82-3. PubMed ID: 11191334
    [No Abstract]   [Full Text] [Related]  

  • 33. A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis.
    Angerer LM; Oleksyn DW; Logan CY; McClay DR; Dale L; Angerer RC
    Development; 2000 Mar; 127(5):1105-14. PubMed ID: 10662649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contribution of hedgehog signaling to the establishment of left-right asymmetry in the sea urchin.
    Warner JF; Miranda EL; McClay DR
    Dev Biol; 2016 Mar; 411(2):314-324. PubMed ID: 26872875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Unilateral dampening of Bmp activity by nodal generates cardiac left-right asymmetry.
    Veerkamp J; Rudolph F; Cseresnyes Z; Priller F; Otten C; Renz M; Schaefer L; Abdelilah-Seyfried S
    Dev Cell; 2013 Mar; 24(6):660-7. PubMed ID: 23499359
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients.
    Angerer LM; Angerer RC
    Semin Cell Dev Biol; 1999 Jun; 10(3):327-34. PubMed ID: 10441547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Transforming growth factor-β signal regulates gut bending in the sea urchin embryo.
    Suzuki H; Yaguchi S
    Dev Growth Differ; 2018 May; 60(4):216-225. PubMed ID: 29878318
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ancestral regulatory circuits governing ectoderm patterning downstream of Nodal and BMP2/4 revealed by gene regulatory network analysis in an echinoderm.
    Saudemont A; Haillot E; Mekpoh F; Bessodes N; Quirin M; Lapraz F; Duboc V; Röttinger E; Range R; Oisel A; Besnardeau L; Wincker P; Lepage T
    PLoS Genet; 2010 Dec; 6(12):e1001259. PubMed ID: 21203442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Micromere-derived signal regulates larval left-right polarity during sea urchin development.
    Kitazawa C; Amemiya S
    J Exp Zool A Ecol Genet Physiol; 2007 May; 307(5):249-62. PubMed ID: 17351911
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Oral-aboral axis specification in the sea urchin embryo II. Mitochondrial distribution and redox state contribute to establishing polarity in Strongylocentrotus purpuratus.
    Coffman JA; McCarthy JJ; Dickey-Sims C; Robertson AJ
    Dev Biol; 2004 Sep; 273(1):160-71. PubMed ID: 15302605
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.