These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 23770060)

  • 1. The salt of the earth: focus on Na⁺ regulation in the cardiac myocyte.
    Avkiran M; Despa S; Shattock MJ
    J Mol Cell Cardiol; 2013 Aug; 61():1. PubMed ID: 23770060
    [No Abstract]   [Full Text] [Related]  

  • 2. Cellular Na(+) homeostasis in the Mammalian heart: relationship to altered contractility, rhythm disturbances, and defects in myocyte metabolism.
    Noble D; Giles W
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S1. PubMed ID: 16686663
    [No Abstract]   [Full Text] [Related]  

  • 3. Stretch-activated current in human atrial myocytes and Na
    Zhan H; Zhang J; Jiao A; Wang Q
    Biomed Eng Online; 2019 Oct; 18(1):104. PubMed ID: 31653259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intra-myocyte ion homeostasis during ischemia-reperfusion injury: effects of pharmacologic preconditioning and controlled reperfusion.
    Davies JE; Digerness SB; Goldberg SP; Killingsworth CR; Katholi CR; Brookes PS; Holman WL
    Ann Thorac Surg; 2003 Oct; 76(4):1252-8; discussion 1258. PubMed ID: 14530020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serine 68 of phospholemman is critical in modulation of contractility, [Ca2+]i transients, and Na+/Ca2+ exchange in adult rat cardiac myocytes.
    Song J; Zhang XQ; Ahlers BA; Carl LL; Wang J; Rothblum LI; Stahl RC; Mounsey JP; Tucker AL; Moorman JR; Cheung JY
    Am J Physiol Heart Circ Physiol; 2005 May; 288(5):H2342-54. PubMed ID: 15653756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracellular Na+ regulation in cardiac myocytes.
    Bers DM; Barry WH; Despa S
    Cardiovasc Res; 2003 Mar; 57(4):897-912. PubMed ID: 12650868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Caspase inhibition reduces cardiac myocyte dyshomeostasis and improves cardiac contractile function after major burn injury.
    Carlson DL; Maass DL; White J; Sikes P; Horton JW
    J Appl Physiol (1985); 2007 Jul; 103(1):323-30. PubMed ID: 17431085
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular control of cardiac sodium homeostasis in health and disease.
    Hilgemann DW; Yaradanakul A; Wang Y; Fuster D
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S47-S56. PubMed ID: 16686682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calmodulin kinase II regulates atrial myocyte late sodium current, calcium handling, and atrial arrhythmia.
    Greer-Short A; Musa H; Alsina KM; Ni L; Word TA; Reynolds JO; Gratz D; Lane C; El-Refaey M; Unudurthi S; Skaf M; Li N; Fedorov VV; Wehrens XHT; Mohler PJ; Hund TJ
    Heart Rhythm; 2020 Mar; 17(3):503-511. PubMed ID: 31622781
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Agrin regulation of alpha3 sodium-potassium ATPase activity modulates cardiac myocyte contraction.
    Hilgenberg LGW; Pham B; Ortega M; Walid S; Kemmerly T; O'Dowd DK; Smith MA
    J Biol Chem; 2009 Jun; 284(25):16956-16965. PubMed ID: 19376779
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Na/K pump inactivation, subsarcolemmal Na measurements, and cytoplasmic ion turnover kinetics contradict restricted Na spaces in murine cardiac myocytes.
    Lu FM; Hilgemann DW
    J Gen Physiol; 2017 Jul; 149(7):727-749. PubMed ID: 28606910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Increases in intracellular sodium activate transcription and gene expression via the salt-inducible kinase 1 network in an atrial myocyte cell line.
    Popov S; Venetsanou K; Chedrese PJ; Pinto V; Takemori H; Franco-Cereceda A; Eriksson P; Mochizuki N; Soares-da-Silva P; Bertorello AM
    Am J Physiol Heart Circ Physiol; 2012 Jul; 303(1):H57-65. PubMed ID: 22467310
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Na+]i handling in the failing human heart.
    Pieske B; Houser SR
    Cardiovasc Res; 2003 Mar; 57(4):874-86. PubMed ID: 12650866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Na+₋sensing quantum dots for cell-based screening of intracellular Na+ concentrations ([Na+]i).
    Wang Y; Mao H; Wong LB
    Talanta; 2011 Jul; 85(1):694-700. PubMed ID: 21645760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intracellular Na+ Concentration ([Na+]i) Is Elevated in Diabetic Hearts Due to Enhanced Na+-Glucose Cotransport.
    Lambert R; Srodulski S; Peng X; Margulies KB; Despa F; Despa S
    J Am Heart Assoc; 2015 Aug; 4(9):e002183. PubMed ID: 26316524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Na/K pump-induced [Na](i) gradients in rat ventricular myocytes measured with two-photon microscopy.
    Despa S; Kockskämper J; Blatter LA; Bers DM
    Biophys J; 2004 Aug; 87(2):1360-8. PubMed ID: 15298938
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific decreasing of Na
    Tsumoto K; Ashihara T; Naito N; Shimamoto T; Amano A; Kurata Y; Kurachi Y
    Sci Rep; 2020 Nov; 10(1):19964. PubMed ID: 33203944
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A molecular formula for heart failure and sudden cardiac death. Focus on "Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice".
    Kaczorowski GJ
    Am J Physiol Cell Physiol; 2011 Sep; 301(3):C557-8. PubMed ID: 21677262
    [No Abstract]   [Full Text] [Related]  

  • 19. Cardiac late Na⁺ current: proarrhythmic effects, roles in long QT syndromes, and pathological relationship to CaMKII and oxidative stress.
    Belardinelli L; Giles WR; Rajamani S; Karagueuzian HS; Shryock JC
    Heart Rhythm; 2015 Feb; 12(2):440-8. PubMed ID: 25460862
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Na
    Chu L; Greenstein JL; Winslow RL
    J Mol Cell Cardiol; 2019 Mar; 128():145-157. PubMed ID: 30731085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.