These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The pathobiology of diabetic vascular complications--cardiovascular and kidney disease. Gray SP; Jandeleit-Dahm K J Mol Med (Berl); 2014 May; 92(5):441-52. PubMed ID: 24687627 [TBL] [Abstract][Full Text] [Related]
4. AGEs, rather than hyperglycemia, are responsible for microvascular complications in diabetes: a "glycoxidation-centric" point of view. Chilelli NC; Burlina S; Lapolla A Nutr Metab Cardiovasc Dis; 2013 Oct; 23(10):913-9. PubMed ID: 23786818 [TBL] [Abstract][Full Text] [Related]
5. Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Zhang Y; Sun X; Icli B; Feinberg MW Endocr Rev; 2017 Apr; 38(2):145-168. PubMed ID: 28323921 [TBL] [Abstract][Full Text] [Related]
6. Targeting Mitochondria and Reactive Oxygen Species-Driven Pathogenesis in Diabetic Nephropathy. Lindblom R; Higgins G; Coughlan M; de Haan JB Rev Diabet Stud; 2015; 12(1-2):134-56. PubMed ID: 26676666 [TBL] [Abstract][Full Text] [Related]
7. Glycation, oxidation, and lipoxidation in the development of diabetic complications. Kennedy AL; Lyons TJ Metabolism; 1997 Dec; 46(12 Suppl 1):14-21. PubMed ID: 9439553 [No Abstract] [Full Text] [Related]
8. Regulation of Vascular Smooth Muscle Cell Dysfunction Under Diabetic Conditions by miR-504. Reddy MA; Das S; Zhuo C; Jin W; Wang M; Lanting L; Natarajan R Arterioscler Thromb Vasc Biol; 2016 May; 36(5):864-73. PubMed ID: 26941017 [TBL] [Abstract][Full Text] [Related]
9. Role of advanced glycation end products (AGEs) and receptor for AGEs (RAGE) in vascular damage in diabetes. Yamagishi S Exp Gerontol; 2011 Apr; 46(4):217-24. PubMed ID: 21111800 [TBL] [Abstract][Full Text] [Related]
10. Emerging Role of Long Non-Coding RNAs in Diabetic Vascular Complications. Tanwar VS; Reddy MA; Natarajan R Front Endocrinol (Lausanne); 2021; 12():665811. PubMed ID: 34234740 [TBL] [Abstract][Full Text] [Related]
11. The role of oxidative stress in the pathogenesis of type 2 diabetes mellitus micro- and macrovascular complications: avenues for a mechanistic-based therapeutic approach. Folli F; Corradi D; Fanti P; Davalli A; Paez A; Giaccari A; Perego C; Muscogiuri G Curr Diabetes Rev; 2011 Sep; 7(5):313-24. PubMed ID: 21838680 [TBL] [Abstract][Full Text] [Related]
12. The prognostic value of inflammatory and vascular endothelial dysfunction biomarkers in microvascular and macrovascular complications in type 1 diabetes. Wołoszyn-Durkiewicz A; Myśliwiec M Pediatr Endocrinol Diabetes Metab; 2019; 25(1):28-35. PubMed ID: 31343130 [TBL] [Abstract][Full Text] [Related]
13. MIRNA146a And Diabetes-Related Complications: A Review. Maratni NPT; Saraswati MR; Ayu Dewi NN; Suastika K Curr Diabetes Rev; 2023; 19(9):e141022209958. PubMed ID: 36239723 [TBL] [Abstract][Full Text] [Related]
14. Roles of circular RNAs in diabetic complications: From molecular mechanisms to therapeutic potential. Zhang JR; Sun HJ Gene; 2020 Dec; 763():145066. PubMed ID: 32827686 [TBL] [Abstract][Full Text] [Related]
15. A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Jha JC; Ho F; Dan C; Jandeleit-Dahm K Clin Sci (Lond); 2018 Aug; 132(16):1811-1836. PubMed ID: 30166499 [TBL] [Abstract][Full Text] [Related]
16. Glycemic variability in type 2 diabetes mellitus: oxidative stress and macrovascular complications. Johnson EL Adv Exp Med Biol; 2012; 771():139-54. PubMed ID: 23393677 [TBL] [Abstract][Full Text] [Related]