These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 23770221)

  • 41. High efficiency gene transfer using chitosan/DNA nanoparticles with specific combinations of molecular weight and degree of deacetylation.
    Lavertu M; Méthot S; Tran-Khanh N; Buschmann MD
    Biomaterials; 2006 Sep; 27(27):4815-24. PubMed ID: 16725196
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The roles of knitted mesh-reinforced collagen-chitosan hybrid scaffold in the one-step repair of full-thickness skin defects in rats.
    Wang X; You C; Hu X; Zheng Y; Li Q; Feng Z; Sun H; Gao C; Han C
    Acta Biomater; 2013 Aug; 9(8):7822-32. PubMed ID: 23603532
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Generation of Bioartificial Salivary Gland Using Whole-Organ Decellularized Bioscaffold.
    Gao Z; Wu T; Xu J; Liu G; Xie Y; Zhang C; Wang J; Wang S
    Cells Tissues Organs; 2014; 200(3-4):171-80. PubMed ID: 25824480
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genetic modification and recombination of salivary gland organ cultures.
    Sequeira SJ; Gervais EM; Ray S; Larsen M
    J Vis Exp; 2013 Jan; (71):e50060. PubMed ID: 23407326
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Determination of the degree of deacetylation of chitosan by capillary zone electrophoresis.
    Wu C; Kao CY; Tseng SY; Chen KC; Chen SF
    Carbohydr Polym; 2014 Oct; 111():236-44. PubMed ID: 25037348
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Re-engineering primary epithelial cells from rhesus monkey parotid glands for use in developing an artificial salivary gland.
    Tran SD; Sugito T; Dipasquale G; Cotrim AP; Bandyopadhyay BC; Riddle K; Mooney D; Kok MR; Chiorini JA; Baum BJ
    Tissue Eng; 2006 Oct; 12(10):2939-48. PubMed ID: 17518661
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Enhanced proteolytic activity is responsible for the aberrant morphogenetic development of SV40-immortalized normal human salivary gland cells grown on basement membrane components.
    Azuma M; Tamatani T; Fukui K; Bando T; Sato M
    Lab Invest; 1994 Feb; 70(2):217-27. PubMed ID: 8139263
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mesenchymal control over elongating and branching morphogenesis in salivary gland development.
    Nogawa H; Mizuno T
    J Embryol Exp Morphol; 1981 Dec; 66():209-21. PubMed ID: 7338711
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Msx-2 expression and glucocorticoid-induced overexpression in embryonic mouse submandibular glands.
    Jaskoll T; Luo W; Snead ML
    J Craniofac Genet Dev Biol; 1998; 18(2):79-87. PubMed ID: 9672840
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Ultrasound-Assisted Extraction of Chitosan from Squid Pen: Molecular Characterization and Fat Binding Capacity.
    Singh A; Benjakul S; Prodpran T
    J Food Sci; 2019 Feb; 84(2):224-234. PubMed ID: 30684268
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Regenerating Salivary Glands in the Microenvironment of Induced Pluripotent Stem Cells.
    Ono H; Obana A; Usami Y; Sakai M; Nohara K; Egusa H; Sakai T
    Biomed Res Int; 2015; 2015():293570. PubMed ID: 26185754
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chitosan-sheath and chitin-core nanowhiskers.
    Pereira AG; Muniz EC; Hsieh YL
    Carbohydr Polym; 2014 Jul; 107():158-66. PubMed ID: 24702931
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Single-Cell RNA-seq Identifies Cell Diversity in Embryonic Salivary Glands.
    Sekiguchi R; Martin D; ; Yamada KM
    J Dent Res; 2020 Jan; 99(1):69-78. PubMed ID: 31644367
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The interplay between nanostructured carbon-grafted chitosan scaffolds and protein adsorption on the cellular response of osteoblasts: structure-function property relationship.
    Depan D; Misra RD
    Acta Biomater; 2013 Apr; 9(4):6084-94. PubMed ID: 23261921
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Salivary Gland Development in Culture.
    Gaete M; Teshima THN; Chatzeli L; Tucker AS
    Methods Mol Biol; 2022; 2403():277-294. PubMed ID: 34913130
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reactive oxygen species scavenging activity of aminoderivatized chitosan with different degree of deacetylation.
    Je JY; Kim SK
    Bioorg Med Chem; 2006 Sep; 14(17):5989-94. PubMed ID: 16725329
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lumen formation in three-dimensional cultures of salivary acinar cells.
    Pradhan S; Liu C; Zhang C; Jia X; Farach-Carson MC; Witt RL
    Otolaryngol Head Neck Surg; 2010 Feb; 142(2):191-5. PubMed ID: 20115973
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines.
    Dhiman HK; Ray AR; Panda AK
    Biomaterials; 2004 Sep; 25(21):5147-54. PubMed ID: 15109838
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tissue engineering of functional salivary gland tissue.
    Joraku A; Sullivan CA; Yoo JJ; Atala A
    Laryngoscope; 2005 Feb; 115(2):244-8. PubMed ID: 15689743
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Grhl2 regulation of SPINT1 expression controls salivary gland development.
    Matsushita T; Sakai M; Yoshida H; Morita S; Hieda Y; Sakai T
    Biochem Biophys Res Commun; 2018 Sep; 504(1):263-269. PubMed ID: 30193734
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.