These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23770242)

  • 1. Structural basis for recognizing phosphoarginine and evolving residue-specific protein phosphatases in gram-positive bacteria.
    Fuhrmann J; Mierzwa B; Trentini DB; Spiess S; Lehner A; Charpentier E; Clausen T
    Cell Rep; 2013 Jun; 3(6):1832-9. PubMed ID: 23770242
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting the arginine phosphatase YwlE with a catalytic redox-based inhibitor.
    Fuhrmann J; Subramanian V; Thompson PR
    ACS Chem Biol; 2013 Sep; 8(9):2024-32. PubMed ID: 23838530
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chasing Phosphoarginine Proteins: Development of a Selective Enrichment Method Using a Phosphatase Trap.
    Trentini DB; Fuhrmann J; Mechtler K; Clausen T
    Mol Cell Proteomics; 2014 Aug; 13(8):1953-64. PubMed ID: 24825175
    [TBL] [Abstract][Full Text] [Related]  

  • 4. N(omega)-phosphoarginine phosphatase (17 kDa) and alkaline phosphatase as protein arginine phosphatases.
    Kumon A; Kodama H; Kondo M; Yokoi F; Hiraishi H
    J Biochem; 1996 Apr; 119(4):719-24. PubMed ID: 8743574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutational study of human phosphohistidine phosphatase: effect on enzymatic activity.
    Ma R; Kanders E; Sundh UB; Geng M; Ek P; Zetterqvist O; Li JP
    Biochem Biophys Res Commun; 2005 Nov; 337(3):887-91. PubMed ID: 16219293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. P-N bond protein phosphatases.
    Attwood PV
    Biochim Biophys Acta; 2013 Jan; 1834(1):470-8. PubMed ID: 22450136
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity-Based Profiling Reveals a Regulatory Link between Oxidative Stress and Protein Arginine Phosphorylation.
    Fuhrmann J; Subramanian V; Kojetin DJ; Thompson PR
    Cell Chem Biol; 2016 Aug; 23(8):967-977. PubMed ID: 27524296
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein phosphatases: structures and implications.
    Jia Z
    Biochem Cell Biol; 1997; 75(1):17-26. PubMed ID: 9192069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Studying the fragmentation behavior of peptides with arginine phosphorylation and its influence on phospho-site localization.
    Schmidt A; Ammerer G; Mechtler K
    Proteomics; 2013 Mar; 13(6):945-54. PubMed ID: 23172725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of regulation and substrate specificity of protein kinase CK2 deduced from the modeling of protein-protein interactions.
    Rekha N; Srinivasan N
    BMC Struct Biol; 2003 May; 3():4. PubMed ID: 12740046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of an essential acidic residue in Cdc25 protein phosphatase and a general three-dimensional model for a core region in protein phosphatases.
    Eckstein JW; Beer-Romero P; Berdo I
    Protein Sci; 1996 Jan; 5(1):5-12. PubMed ID: 8771191
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual specificity phosphatases: a gene family for control of MAP kinase function.
    Camps M; Nichols A; Arkinstall S
    FASEB J; 2000 Jan; 14(1):6-16. PubMed ID: 10627275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinct phosphorylation and dephosphorylation dynamics of protein arginine kinases revealed by fluorescent activity probes.
    Jung H; Choi Y; Lee D; Seo JK; Kee JM
    Chem Commun (Camb); 2019 Jul; 55(52):7482-7485. PubMed ID: 31184653
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genome-wide survey of prokaryotic O-protein phosphatases.
    Bhaduri A; Sowdhamini R
    J Mol Biol; 2005 Sep; 352(3):736-52. PubMed ID: 16095610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional assignment of MAPK phosphatase domains.
    Nordle AK; Rios P; Gaulton A; Pulido R; Attwood TK; Tabernero L
    Proteins; 2007 Oct; 69(1):19-31. PubMed ID: 17596826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The structure and mechanism of protein phosphatases: insights into catalysis and regulation.
    Barford D; Das AK; Egloff MP
    Annu Rev Biophys Biomol Struct; 1998; 27():133-64. PubMed ID: 9646865
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Protein phosphatases: structure and function].
    Bulanova EG; Budagian VM
    Mol Biol (Mosk); 1994; 28(5):991-1001. PubMed ID: 7990844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative phosphoproteomics reveals the role of protein arginine phosphorylation in the bacterial stress response.
    Schmidt A; Trentini DB; Spiess S; Fuhrmann J; Ammerer G; Mechtler K; Clausen T
    Mol Cell Proteomics; 2014 Feb; 13(2):537-50. PubMed ID: 24263382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and Use of a Phosphonate Amidine to Generate an Anti-Phosphoarginine-Specific Antibody.
    Fuhrmann J; Subramanian V; Thompson PR
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14715-8. PubMed ID: 26458230
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of human TMDP, a testis-specific dual specificity protein phosphatase: implications for substrate specificity.
    Kim SJ; Jeong DG; Yoon TS; Son JH; Cho SK; Ryu SE; Kim JH
    Proteins; 2007 Jan; 66(1):239-45. PubMed ID: 17044055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.