These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 23770257)

  • 1. The thalamostriatal pathway and cholinergic control of goal-directed action: interlacing new with existing learning in the striatum.
    Bradfield LA; Bertran-Gonzalez J; Chieng B; Balleine BW
    Neuron; 2013 Jul; 79(1):153-66. PubMed ID: 23770257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thalamic Control of Dorsomedial Striatum Regulates Internal State to Guide Goal-Directed Action Selection.
    Bradfield LA; Balleine BW
    J Neurosci; 2017 Mar; 37(13):3721-3733. PubMed ID: 28242795
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Roles of centromedian parafascicular nuclei of thalamus and cholinergic interneurons in the dorsal striatum in associative learning of environmental events.
    Yamanaka K; Hori Y; Minamimoto T; Yamada H; Matsumoto N; Enomoto K; Aosaki T; Graybiel AM; Kimura M
    J Neural Transm (Vienna); 2018 Mar; 125(3):501-513. PubMed ID: 28324169
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cholinergic Interneurons Use Orbitofrontal Input to Track Beliefs about Current State.
    Stalnaker TA; Berg B; Aujla N; Schoenbaum G
    J Neurosci; 2016 Jun; 36(23):6242-57. PubMed ID: 27277802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aging-Related Dysfunction of Striatal Cholinergic Interneurons Produces Conflict in Action Selection.
    Matamales M; Skrbis Z; Hatch RJ; Balleine BW; Götz J; Bertran-Gonzalez J
    Neuron; 2016 Apr; 90(2):362-73. PubMed ID: 27100198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of the amygdala-striatal pathway in the acquisition and performance of goal-directed instrumental actions.
    Corbit LH; Leung BK; Balleine BW
    J Neurosci; 2013 Nov; 33(45):17682-90. PubMed ID: 24198361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action.
    Hart G; Bradfield LA; Balleine BW
    J Neurosci; 2018 Jan; 38(5):1311-1322. PubMed ID: 29301872
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions.
    Hart G; Bradfield LA; Fok SY; Chieng B; Balleine BW
    Curr Biol; 2018 Jul; 28(14):2218-2229.e7. PubMed ID: 30056856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action.
    Fisher SD; Ferguson LA; Bertran-Gonzalez J; Balleine BW
    Curr Biol; 2020 Nov; 30(22):4541-4546.e5. PubMed ID: 33007245
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How did the chicken cross the road? With her striatal cholinergic interneurons, of course.
    Schoenbaum G; Stalnaker TA; Niv Y
    Neuron; 2013 Jul; 79(1):3-6. PubMed ID: 23849192
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal direct and indirect pathway neurons differentially control the encoding and updating of goal-directed learning.
    Peak J; Chieng B; Hart G; Balleine BW
    Elife; 2020 Nov; 9():. PubMed ID: 33215609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of Striatal Cholinergic Interneurons in Set-Shifting in the Rat.
    Aoki S; Liu AW; Zucca A; Zucca S; Wickens JR
    J Neurosci; 2015 Jun; 35(25):9424-31. PubMed ID: 26109665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabotropic glutamate receptor 2 inhibits thalamically-driven glutamate and dopamine release in the dorsal striatum.
    Johnson KA; Mateo Y; Lovinger DM
    Neuropharmacology; 2017 May; 117():114-123. PubMed ID: 28159646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats.
    Brown HD; Baker PM; Ragozzino ME
    J Neurosci; 2010 Oct; 30(43):14390-8. PubMed ID: 20980596
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum.
    Goldberg JA; Reynolds JN
    Neuroscience; 2011 Dec; 198():27-43. PubMed ID: 21925242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Functional Organization of Cortical and Thalamic Inputs onto Five Types of Striatal Neurons Is Determined by Source and Target Cell Identities.
    Johansson Y; Silberberg G
    Cell Rep; 2020 Jan; 30(4):1178-1194.e3. PubMed ID: 31995757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic interneurons in the Q140 knockin mouse model of Huntington's disease: Reductions in dendritic branching and thalamostriatal input.
    Deng YP; Reiner A
    J Comp Neurol; 2016 Dec; 524(17):3518-3529. PubMed ID: 27219491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Task-dependent function of striatal cholinergic interneurons in behavioural flexibility.
    Okada K; Nishizawa K; Setogawa S; Hashimoto K; Kobayashi K
    Eur J Neurosci; 2018 May; 47(10):1174-1183. PubMed ID: 29119611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Imaging of Cholinergic Interneurons Reveals a Distinctive Spatial Organization and a Functional Gradient across the Mouse Striatum.
    Matamales M; Götz J; Bertran-Gonzalez J
    PLoS One; 2016; 11(6):e0157682. PubMed ID: 27314496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of the dorsomedial striatum in behavioral flexibility: role of muscarinic cholinergic receptors.
    Ragozzino ME; Jih J; Tzavos A
    Brain Res; 2002 Oct; 953(1-2):205-14. PubMed ID: 12384254
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.