BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 23770362)

  • 1. Characterization of the biochemical and biophysical properties of the Saccharomyces cerevisiae phosphate transporter Pho89.
    Sengottaiyan P; Petrlova J; Lagerstedt JO; Ruiz-Pavon L; Budamagunta MS; Voss JC; Persson BL
    Biochem Biophys Res Commun; 2013 Jul; 436(3):551-6. PubMed ID: 23770362
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional expression, purification and reconstitution of the recombinant phosphate transporter Pho89 of Saccharomyces cerevisiae.
    Sengottaiyan P; Ruiz-Pavón L; Persson BL
    FEBS J; 2013 Feb; 280(3):965-75. PubMed ID: 23216645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the Pho89 phosphate transporter by functional hyperexpression in Saccharomyces cerevisiae.
    Zvyagilskaya RA; Lundh F; Samyn D; Pattison-Granberg J; Mouillon JM; Popova Y; Thevelein JM; Persson BL
    FEMS Yeast Res; 2008 Aug; 8(5):685-96. PubMed ID: 18625026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification, cloning and characterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae.
    Martinez P; Persson BL
    Mol Gen Genet; 1998 Jun; 258(6):628-38. PubMed ID: 9671031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phosphate permeases of Saccharomyces cerevisiae.
    Persson BL; Berhe A; Fristedt U; Martinez P; Pattison J; Petersson J; Weinander R
    Biochim Biophys Acta; 1998 Jun; 1365(1-2):23-30. PubMed ID: 9693717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coregulated expression of the Na+/phosphate Pho89 transporter and Ena1 Na+-ATPase allows their functional coupling under high-pH stress.
    Serra-Cardona A; Petrezsélyová S; Canadell D; Ramos J; Ariño J
    Mol Cell Biol; 2014 Dec; 34(24):4420-35. PubMed ID: 25266663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inorganic Phosphate and Sulfate Transport in S. cerevisiae.
    Samyn DR; Persson BL
    Adv Exp Med Biol; 2016; 892():253-269. PubMed ID: 26721277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary and experimental analyses of inorganic phosphate transporter PiT family reveals two related signature sequences harboring highly conserved aspartic acids critical for sodium-dependent phosphate transport function of human PiT2.
    Bøttger P; Pedersen L
    FEBS J; 2005 Jun; 272(12):3060-74. PubMed ID: 15955065
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of the minimal inorganic phosphate transporting unit of human PiT2 suggests a structure universal to PiT-related proteins from all kingdoms of life.
    Bøttger P; Pedersen L
    BMC Biochem; 2011 May; 12():21. PubMed ID: 21586110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a Pichia pastoris cell-surface display system using Flo1p anchor system.
    Tanino T; Fukuda H; Kondo A
    Biotechnol Prog; 2006; 22(4):989-93. PubMed ID: 16889374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two highly conserved glutamate residues critical for type III sodium-dependent phosphate transport revealed by uncoupling transport function from retroviral receptor function.
    Bottger P; Pedersen L
    J Biol Chem; 2002 Nov; 277(45):42741-7. PubMed ID: 12205090
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A reinvestigation of the secondary structure of functionally active vSGLT, the vibrio sodium/galactose cotransporter.
    Turk E; Gasymov OK; Lanza S; Horwitz J; Wright EM
    Biochemistry; 2006 Feb; 45(5):1470-9. PubMed ID: 16445289
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homodimeric mitochondrial phosphate transport protein. Transient subunit/subunit contact site between the transport relevant transmembrane helices A.
    Phelps A; Wohlrab H
    Biochemistry; 2004 May; 43(20):6200-7. PubMed ID: 15147204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional expression of the lactate permease Jen1p of Saccharomyces cerevisiae in Pichia pastoris.
    Soares-Silva I; Schuller D; Andrade RP; Baltazar F; Cássio F; Casal M
    Biochem J; 2003 Dec; 376(Pt 3):781-7. PubMed ID: 12962538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of rat sodium/phosphate cotransporters in the cell membrane transport of arsenate.
    Villa-Bellosta R; Sorribas V
    Toxicol Appl Pharmacol; 2008 Oct; 232(1):125-34. PubMed ID: 18586044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins.
    Forster IC; Hernando N; Biber J; Murer H
    Curr Top Membr; 2012; 70():313-56. PubMed ID: 23177991
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-induced conformational changes of the periplasmic N-terminus of an outer-membrane transporter by site-directed spin labeling.
    Fanucci GE; Coggshall KA; Cadieux N; Kim M; Kadner RJ; Cafiso DS
    Biochemistry; 2003 Feb; 42(6):1391-400. PubMed ID: 12578351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of transport mechanisms and determinants critical for Na+-dependent Pi symport of the PiT family paralogs human PiT1 and PiT2.
    Bøttger P; Hede SE; Grunnet M; Høyer B; Klaerke DA; Pedersen L
    Am J Physiol Cell Physiol; 2006 Dec; 291(6):C1377-87. PubMed ID: 16790504
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure and function of the GTP binding protein Gtr1 and its role in phosphate transport in Saccharomyces cerevisiae.
    Lagerstedt JO; Reeve I; Voss JC; Persson BL
    Biochemistry; 2005 Jan; 44(2):511-7. PubMed ID: 15641775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.