BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 23770370)

  • 61. (1)H, (15)N and (13)C backbone and side chain resonance assignments of the RRM domain from human RBM24.
    Upadhyay SK; Mackereth CD
    Biomol NMR Assign; 2016 Oct; 10(2):237-40. PubMed ID: 27002326
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Structures and target RNA preferences of the RNA-binding protein family of IGF2BPs: An overview.
    Korn SM; Ulshöfer CJ; Schneider T; Schlundt A
    Structure; 2021 Aug; 29(8):787-803. PubMed ID: 34022128
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural basis underlying CAC RNA recognition by the RRM domain of dimeric RNA-binding protein RBPMS.
    Teplova M; Farazi TA; Tuschl T; Patel DJ
    Q Rev Biophys; 2016 Jan; 49():e1. PubMed ID: 26347403
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Structural basis for mRNA recognition by human RBM38.
    Qian K; Li M; Wang J; Zhang M; Wang M
    Biochem J; 2020 Jan; 477(1):161-172. PubMed ID: 31860021
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Tra2 protein biology and mechanisms of splicing control.
    Best A; Dalgliesh C; Kheirollahi-Kouhestani M; Danilenko M; Ehrmann I; Tyson-Capper A; Elliott DJ
    Biochem Soc Trans; 2014 Aug; 42(4):1152-8. PubMed ID: 25110018
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The role of RNA conformation in RNA-protein recognition.
    Kligun E; Mandel-Gutfreund Y
    RNA Biol; 2015; 12(7):720-7. PubMed ID: 25932908
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Proteome-Level Analysis Indicates Global Mechanisms for Post-Translational Regulation of RRM Domains.
    Sloutsky R; Naegle KM
    J Mol Biol; 2018 Jan; 430(1):41-44. PubMed ID: 29146174
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Overcoming the problems associated with poor spectra quality of the protein kinase Byr2 using residual dipolar couplings.
    Gronwald W; Brunner E; Huber F; Wenzler M; Herrmann C; Kalbitzer HR
    Protein Sci; 2001 Jun; 10(6):1260-3. PubMed ID: 11369865
    [TBL] [Abstract][Full Text] [Related]  

  • 69. A combined NMR and EPR investigation on the effect of the disordered RGG regions in the structure and the activity of the RRM domain of FUS.
    Bonucci A; Murrali MG; Banci L; Pierattelli R
    Sci Rep; 2020 Dec; 10(1):20956. PubMed ID: 33262375
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Structural and dynamic studies of the human RNA binding protein RBM3 reveals the molecular basis of its oligomerization and RNA recognition.
    Roy S; Boral S; Maiti S; Kushwaha T; Basak AJ; Lee W; Basak A; Gholap SL; Inampudi KK; De S
    FEBS J; 2022 May; 289(10):2847-2864. PubMed ID: 34837346
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Homodimerization of RBPMS2 through a new RRM-interaction motif is necessary to control smooth muscle plasticity.
    Sagnol S; Yang Y; Bessin Y; Allemand F; Hapkova I; Notarnicola C; Guichou JF; Faure S; Labesse G; de Santa Barbara P
    Nucleic Acids Res; 2014 Sep; 42(15):10173-84. PubMed ID: 25064856
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Tho2-mediated escort of Nrd1 regulates the expression of aging-related genes.
    Liu Y; Park JM; Lim S; Duan R; Lee DY; Choi D; Choi DK; Rhie BH; Cho SY; Ryu HY; Ahn SH
    Aging Cell; 2024 May; ():e14203. PubMed ID: 38769776
    [TBL] [Abstract][Full Text] [Related]  

  • 73. RRM domain of human RBM7: purification, crystallization and structure determination.
    Sofos N; Winkler MB; Brodersen DE
    Acta Crystallogr F Struct Biol Commun; 2016 May; 72(Pt 5):397-402. PubMed ID: 27139832
    [TBL] [Abstract][Full Text] [Related]  

  • 74. (1)H, (15)N and (13)C resonance assignments for the three LOTUS RNA binding domains of Tudor domain-containing protein TDRD7.
    Cui G; Botuyan MV; Mer G
    Biomol NMR Assign; 2013 Apr; 7(1):79-83. PubMed ID: 22481467
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Modular protein-RNA interactions regulating mRNA metabolism: a role for NMR.
    Cukier CD; Ramos A
    Eur Biophys J; 2011 Dec; 40(12):1317-25. PubMed ID: 21472430
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Atg1, a key regulator of autophagy, functions to promote MAPK activation and cell death upon calcium overload in fission yeast.
    Takasaki T; Utsumi R; Shimada E; Bamba A; Hagihara K; Satoh R; Sugiura R
    Microb Cell; 2023 Jun; 10(6):133-140. PubMed ID: 37275474
    [TBL] [Abstract][Full Text] [Related]  

  • 77. A New Method for Determining Structure Ensemble: Application to a RNA Binding Di-Domain Protein.
    Liu W; Zhang J; Fan JS; Tria G; Grüber G; Yang D
    Biophys J; 2016 May; 110(9):1943-56. PubMed ID: 27166803
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Insight into the Structural Basis for Dual Nucleic Acid-Recognition by the Scaffold Attachment Factor B2 Protein.
    Korn SM; Von Ehr J; Dhamotharan K; Tants JN; Abele R; Schlundt A
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834708
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Analysis of the inter-domain orientation of tandem RRM domains with diverse linkers: connecting experimental with AlphaFold2 predicted models.
    Roca-Martínez J; Kang HS; Sattler M; Vranken W
    NAR Genom Bioinform; 2024 Mar; 6(1):lqae002. PubMed ID: 38288375
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Localization of tyrosine at the binding site of neurophysin II by negative nuclear Overhauser effects.
    Noyori R; Kumagai Y; Umeda I; Takaya H
    J Am Chem Soc; 1972 May; 94(11):4017-20. PubMed ID: 5037990
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.