BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 23770541)

  • 1. Imaging of Au nanoparticles deeply buried in polymer matrix by various atomic force microscopy techniques.
    Kimura K; Kobayashi K; Matsushige K; Yamada H
    Ultramicroscopy; 2013 Oct; 133():41-9. PubMed ID: 23770541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing the subsurface of soft matter: simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy.
    Ebeling D; Eslami B; Solares Sde J
    ACS Nano; 2013 Nov; 7(11):10387-96. PubMed ID: 24131492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visualization of subsurface nanoparticles in a polymer matrix using resonance tracking atomic force acoustic microscopy and contact resonance spectroscopy.
    Kimura K; Kobayashi K; Yao A; Yamada H
    Nanotechnology; 2016 Oct; 27(41):415707. PubMed ID: 27607548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualization of Au Nanoparticles Buried in a Polymer Matrix by Scanning Thermal Noise Microscopy.
    Yao A; Kobayashi K; Nosaka S; Kimura K; Yamada H
    Sci Rep; 2017 Feb; 7():42718. PubMed ID: 28210001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cantilever dynamics in Heterodyne Force Microscopy.
    Verbiest GJ; Oosterkamp TH; Rost MJ
    Ultramicroscopy; 2013 Dec; 135():113-20. PubMed ID: 23995285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsurface imaging of carbon nanotube networks in polymers with DC-biased multifrequency dynamic atomic force microscopy.
    Thompson HT; Barroso-Bujans F; Herrero JG; Reifenberger R; Raman A
    Nanotechnology; 2013 Apr; 24(13):135701. PubMed ID: 23478331
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of stiff nanoparticles within cellular structures by contact resonance atomic force microscopy subsurface nanomechanical imaging.
    Reggente M; Passeri D; Angeloni L; Scaramuzzo FA; Barteri M; De Angelis F; Persiconi I; De Stefano ME; Rossi M
    Nanoscale; 2017 May; 9(17):5671-5676. PubMed ID: 28422233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subsurface imaging of rigid particles buried in a polymer matrix based on atomic force microscopy mechanical sensing.
    Zhang W; Chen Y; Hou Y; Wang W; Liu H; Zheng L
    Ultramicroscopy; 2019 Dec; 207():112832. PubMed ID: 31473533
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale subsurface- and material-specific identification of single nanoparticles.
    Nuño Z; Hessler B; Ochoa J; Shon YS; Bonney C; Abate Y
    Opt Express; 2011 Oct; 19(21):20865-75. PubMed ID: 21997096
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Size measurement of nanoparticles using atomic force microscopy.
    Grobelny J; DelRio FW; Pradeep N; Kim DI; Hackley VA; Cook RF
    Methods Mol Biol; 2011; 697():71-82. PubMed ID: 21116955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution noncontact atomic force microscopy.
    Pérez R; García R; Schwarz U
    Nanotechnology; 2009 Jul; 20(26):260201. PubMed ID: 19531843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrast mechanisms on nanoscale subsurface imaging in ultrasonic AFM: scattering of ultrasonic waves and contact stiffness of the tip-sample.
    Sharahi HJ; Shekhawat G; Dravid V; Park S; Egberts P; Kim S
    Nanoscale; 2017 Feb; 9(6):2330-2339. PubMed ID: 28134377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of subsurface microscopy.
    Tetard L; Passian A; Farahi RH; Voy BH; Thundat T
    Methods Mol Biol; 2012; 926():331-43. PubMed ID: 22975973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing individual redox PEGylated gold nanoparticles by electrochemical--atomic force microscopy.
    Huang K; Anne A; Bahri MA; Demaille C
    ACS Nano; 2013 May; 7(5):4151-63. PubMed ID: 23560497
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Subsurface-AFM: sensitivity to the heterodyne signal.
    Verbiest GJ; Oosterkamp TH; Rost MJ
    Nanotechnology; 2013 Sep; 24(36):365701. PubMed ID: 23942333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mapping buried nanostructures using subsurface ultrasonic resonance force microscopy.
    van Es MH; Mohtashami A; Thijssen RMT; Piras D; van Neer PLMJ; Sadeghian H
    Ultramicroscopy; 2018 Jan; 184(Pt A):209-216. PubMed ID: 28968522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing magnetic and gold nanoparticles by using MAClevers® as ultrasensitive sensors.
    Nakamura M; Araki K; Toma HE
    Nanoscale; 2010 Dec; 2(12):2583-6. PubMed ID: 20981361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing metal nanoparticle multilayers with polyphenylene dendrimer/gold nanoparticles via "click" chemistry.
    Li H; Li Z; Wu L; Zhang Y; Yu M; Wei L
    Langmuir; 2013 Mar; 29(12):3943-9. PubMed ID: 23445300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanometer-scale infrared spectroscopy of heterogeneous polymer nanostructures fabricated by tip-based nanofabrication.
    Felts JR; Kjoller K; Lo M; Prater CB; King WP
    ACS Nano; 2012 Sep; 6(9):8015-21. PubMed ID: 22928657
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatially resolved frequency-dependent elasticity measured with pulsed force microscopy and nanoindentation.
    Sweers KK; van der Werf KO; Bennink ML; Subramaniam V
    Nanoscale; 2012 Mar; 4(6):2072-7. PubMed ID: 22331128
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.