BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 23770588)

  • 1. Proteomics research on the effects of applying selenium to apple leaves on photosynthesis.
    Ning CJ; Ding N; Wu GL; Meng HJ; Wang YN; Wang QH
    Plant Physiol Biochem; 2013 Sep; 70():1-6. PubMed ID: 23770588
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of the chloroplast proteomes of a wheat (Triticum aestivum L.) single seed descent line and its parents.
    He ZH; Li HW; Shen Y; Li ZS; Mi H
    J Plant Physiol; 2013 Sep; 170(13):1139-47. PubMed ID: 23683508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of pakchoi leaves and roots under glycine-nitrogen conditions.
    Wang X; Tang D; Huang D
    Plant Physiol Biochem; 2014 Feb; 75():96-104. PubMed ID: 24429133
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential proteomic analysis during the vegetative phase change and the floral transition in Malus domestica.
    Zeng GJ; Li CM; Zhang XZ; Han ZH; Yang FQ; Gao Y; Chen DM; Zhao YB; Wang Y; Teng YL; Dong WX
    Dev Growth Differ; 2010 Sep; 52(7):635-44. PubMed ID: 20887564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression and modification of proteins during ontogenesis in Malus domestica.
    Cao X; Gao Y; Wang Y; Li CM; Zhao YB; Han ZH; Zhang XZ
    Proteomics; 2011 Dec; 11(24):4688-701. PubMed ID: 22002957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of arsenic stress-induced differentially expressed proteins in rice leaves by two-dimensional gel electrophoresis coupled with mass spectrometry.
    Ahsan N; Lee DG; Kim KH; Alam I; Lee SH; Lee KW; Lee H; Lee BH
    Chemosphere; 2010 Jan; 78(3):224-31. PubMed ID: 19948354
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological and proteome analysis suggest critical roles for the photosynthetic system for high water-use efficiency under drought stress in Malus.
    Zhou S; Li M; Guan Q; Liu F; Zhang S; Chen W; Yin L; Qin Y; Ma F
    Plant Sci; 2015 Jul; 236():44-60. PubMed ID: 26025520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differential Chloroplast Proteomics of Temperature Adaptation in Apple (Malus x domestica Borkh.) Microshoots.
    Morkūnaitė-Haimi Š; Vinskiene J; Stanienė G; Haimi P
    Proteomics; 2019 Oct; 19(19):e1800142. PubMed ID: 31430045
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic changes in rice leaves during development of field-grown rice plants.
    Zhao C; Wang J; Cao M; Zhao K; Shao J; Lei T; Yin J; Hill GG; Xu N; Liu S
    Proteomics; 2005 Mar; 5(4):961-72. PubMed ID: 15712239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proteomic Analysis of Vernalization Responsive Proteins in Winter Wheat Jing841.
    Feng Y; Kong B; Zhang J; Chen X; Yuan J; Tang X; Ma C
    Protein Pept Lett; 2018; 25(3):260-274. PubMed ID: 29345567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and proteomic analysis of selenium-mediated tolerance to Cd stress in cucumber (Cucumis sativus L.).
    Sun H; Dai H; Wang X; Wang G
    Ecotoxicol Environ Saf; 2016 Nov; 133():114-26. PubMed ID: 27434422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteome Analysis of Pathogen-Responsive Proteins from Apple Leaves Induced by the Alternaria Blotch Alternaria alternata.
    Zhang CX; Tian Y; Cong PH
    PLoS One; 2015; 10(6):e0122233. PubMed ID: 26086845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into fruit function from the proteome of the hypanthium.
    Marondedze C; Thomas LA
    J Plant Physiol; 2012 Jan; 169(1):12-9. PubMed ID: 22050892
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Differential expression of proteins in Oryza sativa leaves in response to cadmium stress].
    Xiao QT; Rong H; Zhou LY; Liu J; Lin WX; Lin RY
    Ying Yong Sheng Tai Xue Bao; 2011 Apr; 22(4):1013-9. PubMed ID: 21774326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the impact of elevated levels of ozone on tropical wheat using integrated phenotypical, physiological, biochemical, and proteomics approaches.
    Sarkar A; Rakwal R; Bhushan Agrawal S; Shibato J; Ogawa Y; Yoshida Y; Kumar Agrawal G; Agrawal M
    J Proteome Res; 2010 Sep; 9(9):4565-84. PubMed ID: 20701290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome responses of Gracilaria lemaneiformis exposed to lead stress.
    Du H; Liang H; Jiang Y; Qu X; Yan H; Liu X
    Mar Pollut Bull; 2018 Oct; 135():311-317. PubMed ID: 30301043
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparative proteomic analysis of tomato leaves in response to waterlogging stress.
    Ahsan N; Lee DG; Lee SH; Kang KY; Bahk JD; Choi MS; Lee IJ; Renaut J; Lee BH
    Physiol Plant; 2007 Dec; 131(4):555-70. PubMed ID: 18251847
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glyphosate-induced oxidative stress in rice leaves revealed by proteomic approach.
    Ahsan N; Lee DG; Lee KW; Alam I; Lee SH; Bahk JD; Lee BH
    Plant Physiol Biochem; 2008 Dec; 46(12):1062-70. PubMed ID: 18755596
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abscisic acid refines the synthesis of chloroplast proteins in maize (Zea mays) in response to drought and light.
    Hu X; Wu X; Li C; Lu M; Liu T; Wang Y; Wang W
    PLoS One; 2012; 7(11):e49500. PubMed ID: 23152915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative proteomic analysis of amaranth mesophyll and bundle sheath chloroplasts and their adaptation to salt stress.
    Joaquín-Ramos A; Huerta-Ocampo JÁ; Barrera-Pacheco A; De León-Rodríguez A; Baginsky S; Barba de la Rosa AP
    J Plant Physiol; 2014 Sep; 171(15):1423-35. PubMed ID: 25046763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.