BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 23770927)

  • 1. Kidney branching morphogenesis under the control of a ligand-receptor-based Turing mechanism.
    Menshykau D; Iber D
    Phys Biol; 2013 Aug; 10(4):046003. PubMed ID: 23770927
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image-based modeling of kidney branching morphogenesis reveals GDNF-RET based Turing-type mechanism and pattern-modulating WNT11 feedback.
    Menshykau D; Michos O; Lang C; Conrad L; McMahon AP; Iber D
    Nat Commun; 2019 Jan; 10(1):239. PubMed ID: 30651543
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcription Factor 21 Is Required for Branching Morphogenesis and Regulates the Gdnf-Axis in Kidney Development.
    Ide S; Finer G; Maezawa Y; Onay T; Souma T; Scott R; Ide K; Akimoto Y; Li C; Ye M; Zhao X; Baba Y; Minamizuka T; Jin J; Takemoto M; Yokote K; Quaggin SE
    J Am Soc Nephrol; 2018 Dec; 29(12):2795-2808. PubMed ID: 30377232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of BMP4 activity by gremlin 1 enables ureteric bud outgrowth and GDNF/WNT11 feedback signalling during kidney branching morphogenesis.
    Michos O; Gonçalves A; Lopez-Rios J; Tiecke E; Naillat F; Beier K; Galli A; Vainio S; Zeller R
    Development; 2007 Jul; 134(13):2397-405. PubMed ID: 17522159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kidney development: two tales of tubulogenesis.
    Little M; Georgas K; Pennisi D; Wilkinson L
    Curr Top Dev Biol; 2010; 90():193-229. PubMed ID: 20691850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The tyrosine phosphatase Shp2 acts downstream of GDNF/Ret in branching morphogenesis of the developing mouse kidney.
    Willecke R; Heuberger J; Grossmann K; Michos O; Schmidt-Ott K; Walentin K; Costantini F; Birchmeier W
    Dev Biol; 2011 Dec; 360(2):310-7. PubMed ID: 22015719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An interplay of geometry and signaling enables robust lung branching morphogenesis.
    Menshykau D; Blanc P; Unal E; Sapin V; Iber D
    Development; 2014 Dec; 141(23):4526-36. PubMed ID: 25359721
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GDNF and its receptors in the regulation of the ureteric branching.
    Sariola H; Saarma M
    Int J Dev Biol; 1999; 43(5):413-8. PubMed ID: 10535317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney.
    Perälä N; Jakobson M; Ola R; Fazzari P; Penachioni JY; Nymark M; Tanninen T; Immonen T; Tamagnone L; Sariola H
    Differentiation; 2011 Feb; 81(2):81-91. PubMed ID: 21035938
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Downregulation of Spry-1, an inhibitor of GDNF/Ret, causes angiotensin II-induced ureteric bud branching.
    Yosypiv IV; Boh MK; Spera MA; El-Dahr SS
    Kidney Int; 2008 Nov; 74(10):1287-93. PubMed ID: 18650792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Patterning parameters associated with the branching of the ureteric bud regulated by epithelial-mesenchymal interactions.
    Lin Y; Zhang S; Tuukkanen J; Peltoketo H; Pihlajaniemi T; Vainio S
    Int J Dev Biol; 2003 Feb; 47(1):3-13. PubMed ID: 12653247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The dynamics of Turing patterns for morphogen-regulated growing domains with cellular response delays.
    Seirin Lee S; Gaffney EA; Baker RE
    Bull Math Biol; 2011 Nov; 73(11):2527-51. PubMed ID: 21347815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis.
    Lu BC; Cebrian C; Chi X; Kuure S; Kuo R; Bates CM; Arber S; Hassell J; MacNeil L; Hoshi M; Jain S; Asai N; Takahashi M; Schmidt-Ott KM; Barasch J; D'Agati V; Costantini F
    Nat Genet; 2009 Dec; 41(12):1295-302. PubMed ID: 19898483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feedback, receptor clustering, and receptor restriction to single cells yield large Turing spaces for ligand-receptor-based Turing models.
    Kurics T; Menshykau D; Iber D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022716. PubMed ID: 25215767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Angioblast-mesenchyme induction of early kidney development is mediated by Wt1 and Vegfa.
    Gao X; Chen X; Taglienti M; Rumballe B; Little MH; Kreidberg JA
    Development; 2005 Dec; 132(24):5437-49. PubMed ID: 16291795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal regulation of morphogenetic molecules during in vitro branching of the isolated ureteric bud: toward a model of branching through budding in the developing kidney.
    Meyer TN; Schwesinger C; Bush KT; Stuart RO; Rose DW; Shah MM; Vaughn DA; Steer DL; Nigam SK
    Dev Biol; 2004 Nov; 275(1):44-67. PubMed ID: 15464572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PTEN modulates GDNF/RET mediated chemotaxis and branching morphogenesis in the developing kidney.
    Kim D; Dressler GR
    Dev Biol; 2007 Jul; 307(2):290-9. PubMed ID: 17540362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of c-Ret in the developing kidney is responsive to Pax2 gene dosage.
    Clarke JC; Patel SR; Raymond RM; Andrew S; Robinson BG; Dressler GR; Brophy PD
    Hum Mol Genet; 2006 Dec; 15(23):3420-8. PubMed ID: 17047028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential effects of glial cell line-derived neurotrophic factor and neurturin in RET/GFRalpha1-expressing cells.
    Lee RH; Wong WL; Chan CH; Chan SY
    J Neurosci Res; 2006 Jan; 83(1):80-90. PubMed ID: 16294336
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of GFRalpha1 receptor splicing variants with different biochemical properties is modulated during kidney development.
    Charlet-Berguerand N; Le Hir H; Incoronato M; di Porzio U; Yu Y; Jing S; de Franciscis V; Thermes C
    Cell Signal; 2004 Dec; 16(12):1425-34. PubMed ID: 15381258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.