These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

833 related articles for article (PubMed ID: 23771177)

  • 1. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers.
    Vijayraghavan K; Jiang Y; Jang M; Jiang A; Choutagunta K; Vizbaras A; Demmerle F; Boehm G; Amann MC; Belkin MA
    Nat Commun; 2013; 4():2021. PubMed ID: 23771177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadly tunable monolithic room-temperature terahertz quantum cascade laser sources.
    Jung S; Jiang A; Jiang Y; Vijayraghavan K; Wang X; Troccoli M; Belkin MA
    Nat Commun; 2014 Jul; 5():4267. PubMed ID: 25014053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum cascade lasers: from tool to product.
    Razeghi M; Lu QY; Bandyopadhyay N; Zhou W; Heydari D; Bai Y; Slivken S
    Opt Express; 2015 Apr; 23(7):8462-75. PubMed ID: 25968685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High performance terahertz quantum cascade laser sources based on intracavity difference frequency generation.
    Lu QY; Bandyopadhyay N; Slivken S; Bai Y; Razeghi M
    Opt Express; 2013 Jan; 21(1):968-73. PubMed ID: 23388990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spectroscopic Study of Terahertz Generation in Mid-Infrared Quantum Cascade Lasers.
    Jiang Y; Vijayraghavan K; Jung S; Jiang A; Kim JH; Demmerle F; Boehm G; Amann MC; Belkin MA
    Sci Rep; 2016 Feb; 6():21169. PubMed ID: 26879901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room temperature continuous wave, monolithic tunable THz sources based on highly efficient mid-infrared quantum cascade lasers.
    Lu Q; Wu D; Sengupta S; Slivken S; Razeghi M
    Sci Rep; 2016 Mar; 6():23595. PubMed ID: 27009375
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation.
    Consolino L; Jung S; Campa A; De Regis M; Pal S; Kim JH; Fujita K; Ito A; Hitaka M; Bartalini S; De Natale P; Belkin MA; Vitiello MS
    Sci Adv; 2017 Sep; 3(9):e1603317. PubMed ID: 28879235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Room temperature continuous wave milliwatt terahertz source.
    Scheller M; Yarborough JM; Moloney JV; Fallahi M; Koch M; Koch SW
    Opt Express; 2010 Dec; 18(26):27112-7. PubMed ID: 21196987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultra-broadband room-temperature terahertz quantum cascade laser sources based on difference frequency generation.
    Fujita K; Hitaka M; Ito A; Yamanishi M; Dougakiuchi T; Edamura T
    Opt Express; 2016 Jul; 24(15):16357-65. PubMed ID: 27464089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-power dual-wavelength external-cavity diode laser based on tapered amplifier with tunable terahertz frequency difference.
    Chi M; Jensen OB; Petersen PM
    Opt Lett; 2011 Jul; 36(14):2626-8. PubMed ID: 21765489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tunable Terahertz-wave generation from DAST crystal pumped by a monolithic dual-wavelength fiber laser.
    Tang M; Minamide H; Wang Y; Notake T; Ohno S; Ito H
    Opt Express; 2011 Jan; 19(2):779-86. PubMed ID: 21263619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terahertz ambipolar dual-wavelength quantum cascade laser.
    Lever L; Hinchcliffe NM; Khanna SP; Dean P; Ikonic Z; Evans CA; Davies AG; Harrison P; Linfield EH; Kelsall RW
    Opt Express; 2009 Oct; 17(22):19926-32. PubMed ID: 19997216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dual-frequency imaging using an electrically tunable terahertz quantum cascade laser.
    Dean P; Saat NK; Khanna SP; Salih M; Burnett A; Cunningham J; Linfield EH; Davies AG
    Opt Express; 2009 Nov; 17(23):20631-41. PubMed ID: 19997292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent progress of quantum cascade laser research from 3 to 12  μm at the Center for Quantum Devices [Invited].
    Razeghi M; Zhou W; Slivken S; Lu QY; Wu D; McClintock R
    Appl Opt; 2017 Nov; 56(31):H30-H44. PubMed ID: 29091664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterostructure terahertz devices.
    Ryzhii V
    J Phys Condens Matter; 2008 Aug; 20(38):380301. PubMed ID: 21693805
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tri-channel single-mode terahertz quantum cascade laser.
    Wang T; Liu JQ; Liu FQ; Wang LJ; Zhang JC; Wang ZG
    Opt Lett; 2014 Dec; 39(23):6612-5. PubMed ID: 25490634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Circumventing the Manley-Rowe quantum efficiency limit in an optically pumped terahertz quantum-cascade amplifier.
    Waldmueller I; Wanke MC; Chow WW
    Phys Rev Lett; 2007 Sep; 99(11):117401. PubMed ID: 17930470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room temperature terahertz semiconductor frequency comb.
    Lu Q; Wang F; Wu D; Slivken S; Razeghi M
    Nat Commun; 2019 Jun; 10(1):2403. PubMed ID: 31160562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Narrow linewidth single-frequency terahertz source based on difference frequency generation of vertical-external-cavity source-emitting lasers in an external resonance cavity.
    Paul JR; Scheller M; Laurain A; Young A; Koch SW; Moloney J
    Opt Lett; 2013 Sep; 38(18):3654-7. PubMed ID: 24104838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two-chip power-scalable THz-generating semiconductor disk laser.
    Guoyu H; Kriso C; Zhang F; Wichmann M; Stolz W; Fedorova KA; Rahimi-Iman A
    Opt Lett; 2019 Aug; 44(16):4000-4003. PubMed ID: 31415532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 42.