These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 23771314)

  • 1. Accumulation and tolerance characteristics of zinc in Agropyron cristatum plants exposed to zinc-contaminated soil.
    Meng L; Guo Q; Mao P; Tian X
    Bull Environ Contam Toxicol; 2013 Sep; 91(3):298-301. PubMed ID: 23771314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site.
    Yoon J; Cao X; Zhou Q; Ma LQ
    Sci Total Environ; 2006 Sep; 368(2-3):456-64. PubMed ID: 16600337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Growth of Agropyron elongatum in a simulated nickel contaminated soil with lime stabilization.
    Chen Q; Wong JW
    Sci Total Environ; 2006 Aug; 366(2-3):448-55. PubMed ID: 16815530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zinc tolerance and accumulation in Pteris vittata L. and its potential for phytoremediation of Zn- and As-contaminated soil.
    An ZZ; Huang ZC; Lei M; Liao XY; Zheng YM; Chen TB
    Chemosphere; 2006 Feb; 62(5):796-802. PubMed ID: 15987653
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zinc accumulation potential and toxicity threshold determined for a metal-accumulating Populus canescens clone in a dose-response study.
    Langer I; Krpata D; Fitz WJ; Wenzel WW; Schweiger PF
    Environ Pollut; 2009 Oct; 157(10):2871-7. PubMed ID: 19446384
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Absorption and translocation of copper, zinc and chromium by Sesbania virgata.
    Branzini A; González RS; Zubillaga M
    J Environ Manage; 2012 Jul; 102():50-4. PubMed ID: 22425878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals.
    Arbaoui S; Evlard A; Mhamdi Mel W; Campanella B; Paul R; Bettaieb T
    Biodegradation; 2013 Jul; 24(4):563-7. PubMed ID: 23436151
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nickel uptake and distribution in Agropyron cristatum L. in the presence of pyrene.
    Zhang X; Chen J; Liu X; Gao M; Chen X; Huang C
    Ecotoxicol Environ Saf; 2019 Jun; 174():370-376. PubMed ID: 30849657
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyaspartate, a biodegradable chelant that improves the phytoremediation potential of poplar in a highly metal-contaminated agricultural soil.
    Lingua G; Todeschini V; Grimaldi M; Baldantoni D; Proto A; Cicatelli A; Biondi S; Torrigiani P; Castiglione S
    J Environ Manage; 2014 Jan; 132():9-15. PubMed ID: 24252633
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neotyphodium Endophyte Changes Phytoextraction of Zinc in Festuca arundinacea and Lolium perenne.
    Zamani N; Sabzalian MR; Khoshgoftarmanesh A; Afyuni M
    Int J Phytoremediation; 2015; 17(1-6):456-63. PubMed ID: 25495936
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inoculating Helianthus annuus (sunflower) grown in zinc and cadmium contaminated soils with plant growth promoting bacteria--effects on phytoremediation strategies.
    Marques AP; Moreira H; Franco AR; Rangel AO; Castro PM
    Chemosphere; 2013 Jun; 92(1):74-83. PubMed ID: 23582407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potential of four forage grasses in remediation of Cd and Zn contaminated soils.
    Zhang X; Xia H; Li Z; Zhuang P; Gao B
    Bioresour Technol; 2010 Mar; 101(6):2063-6. PubMed ID: 20005700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hyperaccumulation of zinc by Corydalis davidii in Zn-polluted soils.
    Lin W; Xiao T; Wu Y; Ao Z; Ning Z
    Chemosphere; 2012 Feb; 86(8):837-42. PubMed ID: 22154155
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution.
    Kashem MA; Singh BR; Kubota H; Sugawara R; Kitajima N; Kondo T; Kawai S
    Environ Sci Pollut Res Int; 2010 Jun; 17(5):1174-6. PubMed ID: 20300871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms.
    Du J; Guo Z; Li R; Ali A; Guo D; Lahori AH; Wang P; Liu X; Wang X; Zhang Z
    Environ Pollut; 2020 Jun; 261():114213. PubMed ID: 32408418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study on removal of pyrene by
    Zhang X; Chen J; Liu X; Zhang Y; Zou Y; Yuan J
    Int J Phytoremediation; 2020; 22(3):313-321. PubMed ID: 31522526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zn uptake, physiological response and stress attenuation in mycorrhizal jack bean growing in soil with increasing Zn concentrations.
    Andrade SA; Gratão PL; Schiavinato MA; Silveira AP; Azevedo RA; Mazzafera P
    Chemosphere; 2009 Jun; 75(10):1363-70. PubMed ID: 19268339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Greenhouse study on the phytoremediation potential of vetiver grass, Chrysopogon zizanioides L., in arsenic-contaminated soils.
    Datta R; Quispe MA; Sarkar D
    Bull Environ Contam Toxicol; 2011 Jan; 86(1):124-8. PubMed ID: 21190015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc accumulation in plant species indigenous to a Portuguese polluted site: relation with soil contamination.
    Marques AP; Rangel AO; Castro PM
    J Environ Qual; 2007; 36(3):646-53. PubMed ID: 17412901
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.