These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
400 related articles for article (PubMed ID: 23771582)
1. MicroRNA-mediated gene regulation: potential applications for plant genetic engineering. Zhou M; Luo H Plant Mol Biol; 2013 Sep; 83(1-2):59-75. PubMed ID: 23771582 [TBL] [Abstract][Full Text] [Related]
2. Genetically modified (GM) crops: milestones and new advances in crop improvement. Kamthan A; Chaudhuri A; Kamthan M; Datta A Theor Appl Genet; 2016 Sep; 129(9):1639-55. PubMed ID: 27381849 [TBL] [Abstract][Full Text] [Related]
3. Transgenic Breeding Approaches for Improving Abiotic Stress Tolerance: Recent Progress and Future Perspectives. Anwar A; Kim JK Int J Mol Sci; 2020 Apr; 21(8):. PubMed ID: 32295026 [TBL] [Abstract][Full Text] [Related]
4. Role of microRNAs in biotic and abiotic stress responses in crop plants. Kumar R Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742 [TBL] [Abstract][Full Text] [Related]
5. MicroRNA, a new target for engineering new crop cultivars. Zhang B; Wang Q Bioengineered; 2016; 7(1):7-10. PubMed ID: 26901236 [TBL] [Abstract][Full Text] [Related]
6. Genetically modified crops: current status and future prospects. Kumar K; Gambhir G; Dass A; Tripathi AK; Singh A; Jha AK; Yadava P; Choudhary M; Rakshit S Planta; 2020 Mar; 251(4):91. PubMed ID: 32236850 [TBL] [Abstract][Full Text] [Related]
7. A critical and speculative review on microRNA technology in crop improvement: Current challenges and future directions. Zhang B; Unver T Plant Sci; 2018 Sep; 274():193-200. PubMed ID: 30080603 [TBL] [Abstract][Full Text] [Related]
8. GM as a route for delivery of sustainable crop protection. Bruce TJ J Exp Bot; 2012 Jan; 63(2):537-41. PubMed ID: 22016426 [TBL] [Abstract][Full Text] [Related]
9. Genetically modified crops for biomass increase. Genes and strategies. Rojas CA; Hemerly AS; Ferreira PC GM Crops; 2010; 1(3):137-42. PubMed ID: 21865869 [TBL] [Abstract][Full Text] [Related]
10. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants. Wally O; Punja ZK GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674 [TBL] [Abstract][Full Text] [Related]
11. Artificial microRNAs (amiRNAs) engineering - On how microRNA-based silencing methods have affected current plant silencing research. Sablok G; Pérez-Quintero AL; Hassan M; Tatarinova TV; López C Biochem Biophys Res Commun; 2011 Mar; 406(3):315-9. PubMed ID: 21329663 [TBL] [Abstract][Full Text] [Related]
12. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Zhang YC; Yu Y; Wang CY; Li ZY; Liu Q; Xu J; Liao JY; Wang XJ; Qu LH; Chen F; Xin P; Yan C; Chu J; Li HQ; Chen YQ Nat Biotechnol; 2013 Sep; 31(9):848-52. PubMed ID: 23873084 [TBL] [Abstract][Full Text] [Related]
13. Enhancement of Plant Productivity in the Post-Genomics Era. Thao NP; Tran LS Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678 [TBL] [Abstract][Full Text] [Related]
14. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops. Yang S; Vanderbeld B; Wan J; Huang Y Mol Plant; 2010 May; 3(3):469-90. PubMed ID: 20507936 [TBL] [Abstract][Full Text] [Related]
15. Plant biotechnology for food security and bioeconomy. Clarke JL; Zhang P Plant Mol Biol; 2013 Sep; 83(1-2):1-3. PubMed ID: 23860797 [TBL] [Abstract][Full Text] [Related]
16. GmDREB1 overexpression affects the expression of microRNAs in GM wheat seeds. Jiang Q; Sun X; Niu F; Hu Z; Chen R; Zhang H PLoS One; 2017; 12(5):e0175924. PubMed ID: 28459812 [TBL] [Abstract][Full Text] [Related]
17. RNA interference: a promising biotechnological approach to combat plant pathogens, mechanism and future prospects. Ali A; Shahbaz M; Ölmez F; Fatima N; Umar UUD; Ali MA; Akram M; Seelan JSS; Baloch FS World J Microbiol Biotechnol; 2024 Oct; 40(11):339. PubMed ID: 39358476 [TBL] [Abstract][Full Text] [Related]