These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 23771594)
1. Transcriptome analyses of Arabidopsis thaliana seedlings grown in space: implications for gravity-responsive genes. Correll MJ; Pyle TP; Millar KD; Sun Y; Yao J; Edelmann RE; Kiss JZ Planta; 2013 Sep; 238(3):519-33. PubMed ID: 23771594 [TBL] [Abstract][Full Text] [Related]
2. RNA-seq analyses of Arabidopsis thaliana seedlings after exposure to blue-light phototropic stimuli in microgravity. Vandenbrink JP; Herranz R; Poehlman WL; Alex Feltus F; Villacampa A; Ciska M; Javier Medina F; Kiss JZ Am J Bot; 2019 Nov; 106(11):1466-1476. PubMed ID: 31709515 [TBL] [Abstract][Full Text] [Related]
3. Phototropism of Arabidopsis thaliana in microgravity and fractional gravity on the International Space Station. Kiss JZ; Millar KD; Edelmann RE Planta; 2012 Aug; 236(2):635-45. PubMed ID: 22481136 [TBL] [Abstract][Full Text] [Related]
4. Preparation of a Spaceflight Experiment to Study Tropisms in Arabidopsis Seedlings on the International Space Station. Vandenbrink JP; Kiss JZ Methods Mol Biol; 2019; 1924():207-214. PubMed ID: 30694478 [TBL] [Abstract][Full Text] [Related]
5. Transcriptional response of Arabidopsis seedlings during spaceflight reveals peroxidase and cell wall remodeling genes associated with root hair development. Kwon T; Sparks JA; Nakashima J; Allen SN; Tang Y; Blancaflor EB Am J Bot; 2015 Jan; 102(1):21-35. PubMed ID: 25587145 [TBL] [Abstract][Full Text] [Related]
6. Spaceflight induces novel regulatory responses in Arabidopsis seedling as revealed by combined proteomic and transcriptomic analyses. Kruse CPS; Meyers AD; Basu P; Hutchinson S; Luesse DR; Wyatt SE BMC Plant Biol; 2020 May; 20(1):237. PubMed ID: 32460700 [TBL] [Abstract][Full Text] [Related]
7. Morphometric analyses of petioles of seedlings grown in a spaceflight experiment. Johnson CM; Subramanian A; Edelmann RE; Kiss JZ J Plant Res; 2015 Nov; 128(6):1007-16. PubMed ID: 26376793 [TBL] [Abstract][Full Text] [Related]
8. The influence of microgravity and spaceflight on columella cell ultrastructure in starch-deficient mutants of Arabidopsis. Guisinger MM; Kiss JZ Am J Bot; 1999 Oct; 86(10):1357-66. PubMed ID: 10523277 [TBL] [Abstract][Full Text] [Related]
9. RNAseq Analysis of the Response of Herranz R; Vandenbrink JP; Villacampa A; Manzano A; Poehlman WL; Feltus FA; Kiss JZ; Medina FJ Front Plant Sci; 2019; 10():1529. PubMed ID: 31850027 [No Abstract] [Full Text] [Related]
10. The combined effects of real or simulated microgravity and red-light photoactivation on plant root meristematic cells. Valbuena MA; Manzano A; Vandenbrink JP; Pereda-Loth V; Carnero-Diaz E; Edelmann RE; Kiss JZ; Herranz R; Medina FJ Planta; 2018 Sep; 248(3):691-704. PubMed ID: 29948124 [TBL] [Abstract][Full Text] [Related]
11. Growth in spaceflight hardware results in alterations to the transcriptome and proteome. Basu P; Kruse CPS; Luesse DR; Wyatt SE Life Sci Space Res (Amst); 2017 Nov; 15():88-96. PubMed ID: 29198318 [TBL] [Abstract][Full Text] [Related]
12. Spaceflight studies identify a gene encoding an intermediate filament involved in tropism pathways. Shymanovich T; Vandenbrink JP; Herranz R; Medina FJ; Kiss JZ Plant Physiol Biochem; 2022 Jan; 171():191-200. PubMed ID: 35007950 [TBL] [Abstract][Full Text] [Related]
13. ARG1 Functions in the Physiological Adaptation of Undifferentiated Plant Cells to Spaceflight. Zupanska AK; Schultz ER; Yao J; Sng NJ; Zhou M; Callaham JB; Ferl RJ; Paul AL Astrobiology; 2017 Nov; 17(11):1077-1111. PubMed ID: 29088549 [TBL] [Abstract][Full Text] [Related]
14. An endogenous growth pattern of roots is revealed in seedlings grown in microgravity. Millar KD; Johnson CM; Edelmann RE; Kiss JZ Astrobiology; 2011 Oct; 11(8):787-97. PubMed ID: 21970704 [TBL] [Abstract][Full Text] [Related]
15. Microarray profile of gene expression in etiolated Pisum sativum seedlings grown under microgravity conditions in space: Relevance to the International Space Station experiment "Auxin Transport". Kamada M; Oka M; Miyamoto K; Uheda E; Yamazaki C; Shimazu T; Sano H; Kasahara H; Suzuki T; Higashibata A; Ueda J Life Sci Space Res (Amst); 2020 Aug; 26():55-61. PubMed ID: 32718687 [TBL] [Abstract][Full Text] [Related]
16. Spaceflight engages heat shock protein and other molecular chaperone genes in tissue culture cells of Arabidopsis thaliana. Zupanska AK; Denison FC; Ferl RJ; Paul AL Am J Bot; 2013 Jan; 100(1):235-48. PubMed ID: 23258370 [TBL] [Abstract][Full Text] [Related]
17. Microgravity induces changes in microsome-associated proteins of Arabidopsis seedlings grown on board the international space station. Mazars C; Brière C; Grat S; Pichereaux C; Rossignol M; Pereda-Loth V; Eche B; Boucheron-Dubuisson E; Le Disquet I; Medina FJ; Graziana A; Carnero-Diaz E PLoS One; 2014; 9(3):e91814. PubMed ID: 24618597 [TBL] [Abstract][Full Text] [Related]
18. Plant cell proliferation and growth are altered by microgravity conditions in spaceflight. Matía I; González-Camacho F; Herranz R; Kiss JZ; Gasset G; van Loon JJ; Marco R; Javier Medina F J Plant Physiol; 2010 Feb; 167(3):184-93. PubMed ID: 19864040 [TBL] [Abstract][Full Text] [Related]
19. A novel phototropic response to red light is revealed in microgravity. Millar KD; Kumar P; Correll MJ; Mullen JL; Hangarter RP; Edelmann RE; Kiss JZ New Phytol; 2010 May; 186(3):648-56. PubMed ID: 20298479 [TBL] [Abstract][Full Text] [Related]
20. Gravitropism and development of wild-type and starch-deficient mutants of Arabidopsis during spaceflight. Kiss JZ; Katembe WJ; Edelmann RE Physiol Plant; 1998 Apr; 102(4):493-502. PubMed ID: 11541086 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]