These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 23772213)

  • 1. Efficiently passing messages in distributed spiking neural network simulation.
    Thibeault CM; Minkovich K; O'Brien MJ; Harris FC; Srinivasa N
    Front Comput Neurosci; 2013; 7():77. PubMed ID: 23772213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast Simulation of a Multi-Area Spiking Network Model of Macaque Cortex on an MPI-GPU Cluster.
    Tiddia G; Golosio B; Albers J; Senk J; Simula F; Pronold J; Fanti V; Pastorelli E; Paolucci PS; van Albada SJ
    Front Neuroinform; 2022; 16():883333. PubMed ID: 35859800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ANNarchy: a code generation approach to neural simulations on parallel hardware.
    Vitay J; Dinkelbach HÜ; Hamker FH
    Front Neuroinform; 2015; 9():19. PubMed ID: 26283957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Limits to high-speed simulations of spiking neural networks using general-purpose computers.
    Zenke F; Gerstner W
    Front Neuroinform; 2014; 8():76. PubMed ID: 25309418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of neuronal spike exchange methods on a Blue Gene/P supercomputer.
    Hines M; Kumar S; Schürmann F
    Front Comput Neurosci; 2011; 5():49. PubMed ID: 22121345
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimizing NEURON Simulation Environment Using Remote Memory Access with Recursive Doubling on Distributed Memory Systems.
    Shehzad D; Bozkuş Z
    Comput Intell Neurosci; 2016; 2016():3676582. PubMed ID: 27413363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Best bang for your buck: GPU nodes for GROMACS biomolecular simulations.
    Kutzner C; Páll S; Fechner M; Esztermann A; de Groot BL; Grubmüller H
    J Comput Chem; 2015 Oct; 36(26):1990-2008. PubMed ID: 26238484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A unified framework for spiking and gap-junction interactions in distributed neuronal network simulations.
    Hahne J; Helias M; Kunkel S; Igarashi J; Bolten M; Frommer A; Diesmann M
    Front Neuroinform; 2015; 9():22. PubMed ID: 26441628
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SpykeTorch: Efficient Simulation of Convolutional Spiking Neural Networks With at Most One Spike per Neuron.
    Mozafari M; Ganjtabesh M; Nowzari-Dalini A; Masquelier T
    Front Neurosci; 2019; 13():625. PubMed ID: 31354403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binary Associative Memories as a Benchmark for Spiking Neuromorphic Hardware.
    Stöckel A; Jenzen C; Thies M; Rückert U
    Front Comput Neurosci; 2017; 11():71. PubMed ID: 28878642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A case for spiking neural network simulation based on configurable multiple-FPGA systems.
    Yang S; Wu Q; Li R
    Cogn Neurodyn; 2011 Sep; 5(3):301-9. PubMed ID: 22942919
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time computing platform for spiking neurons (RT-spike).
    Ros E; Ortigosa EM; Agís R; Carrillo R; Arnold M
    IEEE Trans Neural Netw; 2006 Jul; 17(4):1050-63. PubMed ID: 16856666
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel and Practical Approach of Efficient Image Chaotic Encryption Based on Message Passing Interface (MPI).
    Abutaha M; Amar I; AlQahtani S
    Entropy (Basel); 2022 Apr; 24(4):. PubMed ID: 35455229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design Space Exploration of Hardware Spiking Neurons for Embedded Artificial Intelligence.
    Abderrahmane N; Lemaire E; Miramond B
    Neural Netw; 2020 Jan; 121():366-386. PubMed ID: 31593842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analyzing large-scale spiking neural data with HRLAnalysis(™).
    Thibeault CM; O'Brien MJ; Srinivasa N
    Front Neuroinform; 2014; 8():17. PubMed ID: 24634655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms.
    Stromatias E; Neil D; Pfeiffer M; Galluppi F; Furber SB; Liu SC
    Front Neurosci; 2015; 9():222. PubMed ID: 26217169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Large-Scale Simulation of a Layered Cortical Sheet of Spiking Network Model Using a Tile Partitioning Method.
    Igarashi J; Yamaura H; Yamazaki T
    Front Neuroinform; 2019; 13():71. PubMed ID: 31849631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-scale virtual screening on public cloud resources with Apache Spark.
    Capuccini M; Ahmed L; Schaal W; Laure E; Spjuth O
    J Cheminform; 2017; 9():15. PubMed ID: 28316653
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.