These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23772213)

  • 21. Large-scale virtual screening on public cloud resources with Apache Spark.
    Capuccini M; Ahmed L; Schaal W; Laure E; Spjuth O
    J Cheminform; 2017; 9():15. PubMed ID: 28316653
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform.
    Patiño-Saucedo A; Rostro-Gonzalez H; Serrano-Gotarredona T; Linares-Barranco B
    Neural Netw; 2020 Jan; 121():319-328. PubMed ID: 31590013
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparison of Artificial and Spiking Neural Networks on Digital Hardware.
    Davidson S; Furber SB
    Front Neurosci; 2021; 15():651141. PubMed ID: 33889071
    [TBL] [Abstract][Full Text] [Related]  

  • 25. GPUs Outperform Current HPC and Neuromorphic Solutions in Terms of Speed and Energy When Simulating a Highly-Connected Cortical Model.
    Knight JC; Nowotny T
    Front Neurosci; 2018; 12():941. PubMed ID: 30618570
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A forecast-based STDP rule suitable for neuromorphic implementation.
    Davies S; Galluppi F; Rast AD; Furber SB
    Neural Netw; 2012 Aug; 32():3-14. PubMed ID: 22386500
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Small universal spiking neural P systems working in exhaustive mode.
    Pan L; Zeng X
    IEEE Trans Nanobioscience; 2011 Jun; 10(2):99-105. PubMed ID: 21712164
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supervised learning in spiking neural networks: A review of algorithms and evaluations.
    Wang X; Lin X; Dang X
    Neural Netw; 2020 May; 125():258-280. PubMed ID: 32146356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Communication Sparsity in Distributed Spiking Neural Network Simulations to Improve Scalability.
    Fernandez-Musoles C; Coca D; Richmond P
    Front Neuroinform; 2019; 13():19. PubMed ID: 31001102
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Series: Medical Applications of the PHITS Code (2): Acceleration by Parallel Computing].
    Furuta T; Sato T
    Igaku Butsuri; 2015; 35(3):264-8. PubMed ID: 27125134
    [TBL] [Abstract][Full Text] [Related]  

  • 31. NeuroFlow: A General Purpose Spiking Neural Network Simulation Platform using Customizable Processors.
    Cheung K; Schultz SR; Luk W
    Front Neurosci; 2015; 9():516. PubMed ID: 26834542
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benchmarking Highly Parallel Hardware for Spiking Neural Networks in Robotics.
    Steffen L; Koch R; Ulbrich S; Nitzsche S; Roennau A; Dillmann R
    Front Neurosci; 2021; 15():667011. PubMed ID: 34267622
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The parallelization of SPIDER on distributed-memory computers using MPI.
    Yang C; Penczek PA; Leith A; Asturias FJ; Ng EG; Glaeser RM; Frank J
    J Struct Biol; 2007 Jan; 157(1):240-9. PubMed ID: 16859923
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model.
    van Albada SJ; Rowley AG; Senk J; Hopkins M; Schmidt M; Stokes AB; Lester DR; Diesmann M; Furber SB
    Front Neurosci; 2018; 12():291. PubMed ID: 29875620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. NEVESIM: event-driven neural simulation framework with a Python interface.
    Pecevski D; Kappel D; Jonke Z
    Front Neuroinform; 2014; 8():70. PubMed ID: 25177291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [Review of the research of spiking neuron network based on memristor].
    Xu G; Yao L; Li Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2018 Jun; 35(3):475-480. PubMed ID: 29938958
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Technical Note: An hybrid parallel implementation for EGSnrc Monte Carlo user codes.
    Doerner E; Caprile P
    Med Phys; 2018 Jun; ():. PubMed ID: 29870055
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implementing Signature Neural Networks with Spiking Neurons.
    Carrillo-Medina JL; Latorre R
    Front Comput Neurosci; 2016; 10():132. PubMed ID: 28066221
    [No Abstract]   [Full Text] [Related]  

  • 39. Neuronal message passing using Mean-field, Bethe, and Marginal approximations.
    Parr T; Markovic D; Kiebel SJ; Friston KJ
    Sci Rep; 2019 Feb; 9(1):1889. PubMed ID: 30760782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. How Amdahl's Law limits the performance of large artificial neural networks : why the functionality of full-scale brain simulation on processor-based simulators is limited.
    Végh J
    Brain Inform; 2019 Apr; 6(1):4. PubMed ID: 30972504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.