These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 23772609)

  • 1. Prediction of cancer rescue p53 mutants in silico using Naïve Bayes learning methodology.
    Ramani RG; Jacob SG
    Protein Pept Lett; 2013 Nov; 20(11):1280-91. PubMed ID: 23772609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting positive p53 cancer rescue regions using Most Informative Positive (MIP) active learning.
    Danziger SA; Baronio R; Ho L; Hall L; Salmon K; Hatfield GW; Kaiser P; Lathrop RH
    PLoS Comput Biol; 2009 Sep; 5(9):e1000498. PubMed ID: 19756158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of restoring sequence-specific DNA binding and transactivation to mutant p53 by suppressor mutations.
    Suad O; Rozenberg H; Brosh R; Diskin-Posner Y; Kessler N; Shimon LJ; Frolow F; Liran A; Rotter V; Shakked Z
    J Mol Biol; 2009 Jan; 385(1):249-65. PubMed ID: 18996393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional census of mutation sequence spaces: the example of p53 cancer rescue mutants.
    Danziger SA; Swamidass SJ; Zeng J; Dearth LR; Lu Q; Chen JH; Cheng J; Hoang VP; Saigo H; Luo R; Baldi P; Brachmann RK; Lathrop RH
    IEEE/ACM Trans Comput Biol Bioinform; 2006; 3(2):114-25. PubMed ID: 17048398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. QM-MM simulations on p53-DNA complex: a study of hot spot and rescue mutants.
    Koulgi S; Achalere A; Sharma N; Sonavane U; Joshi R
    J Mol Model; 2013 Dec; 19(12):5545-59. PubMed ID: 24253321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of oncogenic, suppressor and rescued p53 core-domain variants: mechanisms of mutant p53 rescue.
    Wallentine BD; Wang Y; Tretyachenko-Ladokhina V; Tan M; Senear DF; Luecke H
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2146-56. PubMed ID: 24100332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ensemble-based computational approach discriminates functional activity of p53 cancer and rescue mutants.
    Demir Ö; Baronio R; Salehi F; Wassman CD; Hall L; Hatfield GW; Chamberlin R; Kaiser P; Lathrop RH; Amaro RE
    PLoS Comput Biol; 2011 Oct; 7(10):e1002238. PubMed ID: 22028641
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot-spot mutants of p53 core domain evince characteristic local structural changes.
    Wong KB; DeDecker BS; Freund SM; Proctor MR; Bycroft M; Fersht AR
    Proc Natl Acad Sci U S A; 1999 Jul; 96(15):8438-42. PubMed ID: 10411893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure-function-rescue: the diverse nature of common p53 cancer mutants.
    Joerger AC; Fersht AR
    Oncogene; 2007 Apr; 26(15):2226-42. PubMed ID: 17401432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structures of p53 cancer mutants and mechanism of rescue by second-site suppressor mutations.
    Joerger AC; Ang HC; Veprintsev DB; Blair CM; Fersht AR
    J Biol Chem; 2005 Apr; 280(16):16030-7. PubMed ID: 15703170
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel human p53 mutations that are toxic to yeast can enhance transactivation of specific promoters and reactivate tumor p53 mutants.
    Inga A; Resnick MA
    Oncogene; 2001 Jun; 20(26):3409-19. PubMed ID: 11423991
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and Function of p53-DNA Complexes with Inactivation and Rescue Mutations: A Molecular Dynamics Simulation Study.
    Kamaraj B; Bogaerts A
    PLoS One; 2015; 10(8):e0134638. PubMed ID: 26244575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis.
    Kato S; Han SY; Liu W; Otsuka K; Shibata H; Kanamaru R; Ishioka C
    Proc Natl Acad Sci U S A; 2003 Jul; 100(14):8424-9. PubMed ID: 12826609
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Distinct Rayleigh scattering from hot spot mutant p53 proteins reveals cancer cells.
    Jun HJ; Nguyen AH; Kim YH; Park KH; Kim D; Kim KK; Sim SJ
    Small; 2014 Jul; 10(14):2954-62. PubMed ID: 24700814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of rescue of common p53 cancer mutations by second-site suppressor mutations.
    Nikolova PV; Wong KB; DeDecker B; Henckel J; Fersht AR
    EMBO J; 2000 Feb; 19(3):370-8. PubMed ID: 10654936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of P53 mutants (multiple sites) transcriptional activity based on structural (2D&3D) properties.
    Ramani RG; Jacob SG
    PLoS One; 2013; 8(2):e55401. PubMed ID: 23468845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Choosing where to look next in a mutation sequence space: Active Learning of informative p53 cancer rescue mutants.
    Danziger SA; Zeng J; Wang Y; Brachmann RK; Lathrop RH
    Bioinformatics; 2007 Jul; 23(13):i104-14. PubMed ID: 17646286
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insights into Allosteric Mechanisms of the Lung-Enriched p53 Mutants V157F and R158L.
    Lei J; Li X; Cai M; Guo T; Lin D; Deng X; Li Y
    Int J Mol Sci; 2022 Sep; 23(17):. PubMed ID: 36077492
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural studies of p53 inactivation by DNA-contact mutations and its rescue by suppressor mutations via alternative protein-DNA interactions.
    Eldar A; Rozenberg H; Diskin-Posner Y; Rohs R; Shakked Z
    Nucleic Acids Res; 2013 Oct; 41(18):8748-59. PubMed ID: 23863845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting transcriptional activity of multiple site p53 mutants based on hybrid properties.
    Huang T; Niu S; Xu Z; Huang Y; Kong X; Cai YD; Chou KC
    PLoS One; 2011; 6(8):e22940. PubMed ID: 21857971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.