These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 23772829)
1. Automatic detection of primary motor areas using diffusion MRI tractography: comparison with functional MRI and electrical stimulation mapping. Jeong JW; Asano E; Brown EC; Tiwari VN; Chugani DC; Chugani HT Epilepsia; 2013 Aug; 54(8):1381-90. PubMed ID: 23772829 [TBL] [Abstract][Full Text] [Related]
2. Localization of specific language pathways using diffusion-weighted imaging tractography for presurgical planning of children with intractable epilepsy. Jeong JW; Asano E; Juhász C; Chugani HT Epilepsia; 2015 Jan; 56(1):49-57. PubMed ID: 25489639 [TBL] [Abstract][Full Text] [Related]
3. Quantification of primary motor pathways using diffusion MRI tractography and its application to predict postoperative motor deficits in children with focal epilepsy. Jeong JW; Asano E; Juhász C; Chugani HT Hum Brain Mapp; 2014 Jul; 35(7):3216-26. PubMed ID: 24142581 [TBL] [Abstract][Full Text] [Related]
4. Functional MRI vs. navigated TMS to optimize M1 seed volume delineation for DTI tractography. A prospective study in patients with brain tumours adjacent to the corticospinal tract. Weiss Lucas C; Tursunova I; Neuschmelting V; Nettekoven C; Oros-Peusquens AM; Stoffels G; Faymonville AM; Jon SN; Langen KJ; Lockau H; Goldbrunner R; Grefkes C Neuroimage Clin; 2017; 13():297-309. PubMed ID: 28050345 [TBL] [Abstract][Full Text] [Related]
5. Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction. Jeong JW; Lee J; Kamson DO; Chugani HT; Juhász C Magn Reson Imaging; 2015 Sep; 33(7):895-902. PubMed ID: 25959649 [TBL] [Abstract][Full Text] [Related]
6. Localization of function-specific segments of the primary motor pathway in children with Sturge-Weber syndrome: a multimodal imaging analysis. Jeong JW; Chugani HT; Juhász C J Magn Reson Imaging; 2013 Nov; 38(5):1152-61. PubMed ID: 23463702 [TBL] [Abstract][Full Text] [Related]
7. Differential involvement of corticospinal tract (CST) fibers in UMN-predominant ALS patients with or without CST hyperintensity: A diffusion tensor tractography study. Rajagopalan V; Pioro EP Neuroimage Clin; 2017; 14():574-579. PubMed ID: 28337412 [TBL] [Abstract][Full Text] [Related]
8. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. Kumar A; Juhasz C; Asano E; Sundaram SK; Makki MI; Chugani DC; Chugani HT AJNR Am J Neuroradiol; 2009 Nov; 30(10):1963-70. PubMed ID: 19661173 [TBL] [Abstract][Full Text] [Related]
9. Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. Weiss C; Tursunova I; Neuschmelting V; Lockau H; Nettekoven C; Oros-Peusquens AM; Stoffels G; Rehme AK; Faymonville AM; Shah NJ; Langen KJ; Goldbrunner R; Grefkes C Neuroimage Clin; 2015; 7():424-37. PubMed ID: 25685709 [TBL] [Abstract][Full Text] [Related]
10. Incorporating functional MR imaging into diffusion tensor tractography in the preoperative assessment of the corticospinal tract in patients with brain tumors. Smits M; Vernooij MW; Wielopolski PA; Vincent AJ; Houston GC; van der Lugt A AJNR Am J Neuroradiol; 2007 Aug; 28(7):1354-61. PubMed ID: 17698540 [TBL] [Abstract][Full Text] [Related]
11. Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography. Radmanesh A; Zamani AA; Whalen S; Tie Y; Suarez RO; Golby AJ Clin Neurol Neurosurg; 2015 Feb; 129():44-9. PubMed ID: 25532134 [TBL] [Abstract][Full Text] [Related]
12. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. He J; Zhang F; Pan Y; Feng Y; Rushmore J; Torio E; Rathi Y; Makris N; Kikinis R; Golby AJ; O'Donnell LJ Hum Brain Mapp; 2023 Dec; 44(17):6055-6073. PubMed ID: 37792280 [TBL] [Abstract][Full Text] [Related]
13. Associations between clinical outcome and navigated transcranial magnetic stimulation characteristics in patients with motor-eloquent brain lesions: a combined navigated transcranial magnetic stimulation-diffusion tensor imaging fiber tracking approach. Sollmann N; Wildschuetz N; Kelm A; Conway N; Moser T; Bulubas L; Kirschke JS; Meyer B; Krieg SM J Neurosurg; 2018 Mar; 128(3):800-810. PubMed ID: 28362239 [TBL] [Abstract][Full Text] [Related]
14. The motor-evoked potential threshold evaluated by tractography and electrical stimulation. Kamada K; Todo T; Ota T; Ino K; Masutani Y; Aoki S; Takeuchi F; Kawai K; Saito N J Neurosurg; 2009 Oct; 111(4):785-95. PubMed ID: 19199462 [TBL] [Abstract][Full Text] [Related]
15. Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. Chen Z; Tie Y; Olubiyi O; Zhang F; Mehrtash A; Rigolo L; Kahali P; Norton I; Pasternak O; Rathi Y; Golby AJ; O'Donnell LJ Int J Comput Assist Radiol Surg; 2016 Aug; 11(8):1475-86. PubMed ID: 26762104 [TBL] [Abstract][Full Text] [Related]
16. Corticospinal tract extraction combining diffusion tensor tractography with FMRI in patients with brain diseases. Suzuki Y; Yagi K; Kodama T; Shinoura N Magn Reson Med Sci; 2009; 8(1):9-16. PubMed ID: 19336984 [TBL] [Abstract][Full Text] [Related]
17. [Function magnetic resonance imaging and diffusion tensor tractography in patients with brain gliomas involving motor areas: clinical application and outcome]. Li ZX; Dai JP; Jiang T; Li SW; Sun YL; Liang XL; Gao PY Zhonghua Wai Ke Za Zhi; 2006 Sep; 44(18):1275-9. PubMed ID: 17147897 [TBL] [Abstract][Full Text] [Related]
18. Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract. Rosenstock T; Giampiccolo D; Schneider H; Runge SJ; Bährend I; Vajkoczy P; Picht T Neuroimage Clin; 2017; 16():276-285. PubMed ID: 28840099 [TBL] [Abstract][Full Text] [Related]
19. Assessing Region of Interest Schemes for the Corticospinal Tract in Patients With Brain Tumors. Niu C; Liu X; Yang Y; Zhang K; Min Z; Wang M; Li W; Guo L; Lin P; Zhang M Medicine (Baltimore); 2016 Mar; 95(12):e3189. PubMed ID: 27015212 [TBL] [Abstract][Full Text] [Related]
20. Differences between the somatotopic corticospinal tract for the fingers and toes in the human brain. Yeo SS; Jang SH NeuroRehabilitation; 2012; 31(4):395-9. PubMed ID: 23232163 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]