BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 23772910)

  • 21. Inactivation of Escherichia coli O157:H7 in biofilm on stainless steel by treatment with an alkaline cleaner and a bacteriophage.
    Sharma M; Ryu JH; Beuchat LR
    J Appl Microbiol; 2005; 99(3):449-59. PubMed ID: 16108786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The application of bacteriophage to control
    Kim HS; Ashrafudoulla M; Kim BR; Mizan MFR; Jung SJ; Sadekuzzaman M; Park SH; Ha SD
    Biofouling; 2021 Jul; 37(6):606-614. PubMed ID: 34190008
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of polymyxin resistance (pmr) on biofilm formation of Cronobacter sakazakii.
    Bao X; Jia X; Chen L; Peters BM; Lin CW; Chen D; Li L; Li B; Li Y; Xu Z; Shirtliff ME
    Microb Pathog; 2017 May; 106():16-19. PubMed ID: 28012985
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amaranthus tricolor crude extract inhibits Cronobacter sakazakii isolated from powdered infant formula.
    Fei P; Feng H; Wang Y; Kang H; Xing M; Chang Y; Guo L; Chen J
    J Dairy Sci; 2020 Nov; 103(11):9969-9979. PubMed ID: 32861498
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Production of biofilm and quorum sensing by Escherichia coli O157:H7 and its transfer from contact surfaces to meat, poultry, ready-to-eat deli, and produce products.
    Silagyi K; Kim SH; Lo YM; Wei CI
    Food Microbiol; 2009 Aug; 26(5):514-9. PubMed ID: 19465248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Food-Safe Modification of Stainless Steel Food-Processing Surfaces to Reduce Bacterial Biofilms.
    Awad TS; Asker D; Hatton BD
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):22902-22912. PubMed ID: 29888590
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation.
    Speranza B; Corbo MR; Sinigaglia M
    J Food Sci; 2011; 76(1):M12-6. PubMed ID: 21535687
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biofilm formation of O157 and non-O157 Shiga toxin-producing Escherichia coli and multidrug-resistant and susceptible Salmonella typhimurium and newport and their inactivation by sanitizers.
    Fouladkhah A; Geornaras I; Sofos JN
    J Food Sci; 2013 Jun; 78(6):M880-6. PubMed ID: 23601046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biofilm formation and exopolysaccharide (EPS) production by Cronobacter sakazakii depending on environmental conditions.
    Jung JH; Choi NY; Lee SY
    Food Microbiol; 2013 May; 34(1):70-80. PubMed ID: 23498180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of Biofilm Formation by Cronobacter spp. Isolates of Different Food Origin under Model Conditions.
    Aly MA; Reimhult E; Kneifel W; Domig KJ
    J Food Prot; 2019 Jan; 82(1):65-77. PubMed ID: 30702944
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the biocontrol and anti-biofilm potential of a three phage cocktail against Cronobacter sakazakii in different brands of infant formula.
    Endersen L; Buttimer C; Nevin E; Coffey A; Neve H; Oliveira H; Lavigne R; O'Mahony J
    Int J Food Microbiol; 2017 Jul; 253():1-11. PubMed ID: 28460269
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Attachment and biofilm formation on stainless steel by Escherichia coli O157:H7 as affected by curli production.
    Ryu JH; Kim H; Frank JF; Beuchat LR
    Lett Appl Microbiol; 2004; 39(4):359-62. PubMed ID: 15355539
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inactivation of Cronobacter sakazakii biofilms using high voltage atmospheric cold plasma on various food-contact surfaces-a preliminary study.
    Phan NLB; Nguyen T; Pedley J; Flint S
    Lett Appl Microbiol; 2023 Jan; 76(1):. PubMed ID: 36688780
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Autoinducer-2 activity of gram-negative foodborne pathogenic bacteria and its influence on biofilm formation.
    Yoon Y; Sofos JN
    J Food Sci; 2008 Apr; 73(3):M140-7. PubMed ID: 18387117
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Biofilm formation on enteral feeding tubes by Cronobacter sakazakii, Salmonella serovars and other Enterobacteriaceae.
    Hurrell E; Kucerova E; Loughlin M; Caubilla-Barron J; Forsythe SJ
    Int J Food Microbiol; 2009 Dec; 136(2):227-31. PubMed ID: 19720416
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of stainless steel finish on Salmonella Typhimurium attachment, biofilm formation and sensitivity to chlorine.
    Schlisselberg DB; Yaron S
    Food Microbiol; 2013 Aug; 35(1):65-72. PubMed ID: 23628616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biochemical and genetic characteristics of Cronobacter sakazakii biofilm formation.
    Du XJ; Wang F; Lu X; Rasco BA; Wang S
    Res Microbiol; 2012 Jul; 163(6-7):448-56. PubMed ID: 22771511
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of Staphylococcus aureus by antimicrobial biofilms formed by competitive exclusion microorganisms on stainless steel.
    Son H; Park S; Beuchat LR; Kim H; Ryu JH
    Int J Food Microbiol; 2016 Dec; 238():165-171. PubMed ID: 27648758
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Effects of Temperature on the Growth and Heat Resistance of Cronobacter spp.
    Ueda S
    Biocontrol Sci; 2017; 22(2):125-129. PubMed ID: 28659555
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A comparative study of biofilm formation by Shiga toxigenic Escherichia coli using epifluorescence microscopy on stainless steel and a microtitre plate method.
    Rivas L; Dykes GA; Fegan N
    J Microbiol Methods; 2007 Apr; 69(1):44-51. PubMed ID: 17239460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.