These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
252 related articles for article (PubMed ID: 23773037)
1. Strained lattice with persistent atomic order in Pt3Fe2 intermetallic core-shell nanocatalysts. Prabhudev S; Bugnet M; Bock C; Botton GA ACS Nano; 2013 Jul; 7(7):6103-10. PubMed ID: 23773037 [TBL] [Abstract][Full Text] [Related]
2. Morphology and lateral strain control of Pt nanoparticles via core-shell construction using alloy AgPd core toward oxygen reduction reaction. Yang J; Yang J; Ying JY ACS Nano; 2012 Nov; 6(11):9373-82. PubMed ID: 23061786 [TBL] [Abstract][Full Text] [Related]
3. Structural and architectural evaluation of bimetallic nanoparticles: a case study of Pt-Ru core-shell and alloy nanoparticles. Alayoglu S; Zavalij P; Eichhorn B; Wang Q; Frenkel AI; Chupas P ACS Nano; 2009 Oct; 3(10):3127-37. PubMed ID: 19731934 [TBL] [Abstract][Full Text] [Related]
4. Tunable properties of PtxFe1-x electrocatalysts and their catalytic activity towards the oxygen reduction reaction. Lai FJ; Chou HL; Sarma LS; Wang DY; Lin YC; Lee JF; Hwang BJ; Chen CC Nanoscale; 2010 Apr; 2(4):573-81. PubMed ID: 20644761 [TBL] [Abstract][Full Text] [Related]
5. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation. Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152 [TBL] [Abstract][Full Text] [Related]
6. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction. Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730 [TBL] [Abstract][Full Text] [Related]
7. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Wang D; Xin HL; Hovden R; Wang H; Yu Y; Muller DA; DiSalvo FJ; Abruña HD Nat Mater; 2013 Jan; 12(1):81-7. PubMed ID: 23104154 [TBL] [Abstract][Full Text] [Related]
8. In situ study of atomic structure transformations of Pt-Ni nanoparticle catalysts during electrochemical potential cycling. Tuaev X; Rudi S; Petkov V; Hoell A; Strasser P ACS Nano; 2013 Jul; 7(7):5666-74. PubMed ID: 23805992 [TBL] [Abstract][Full Text] [Related]
9. Structural transformation of carbon-supported Pt₃Cr nanoparticles from a disordered to an ordered phase as a durable oxygen reduction electrocatalyst. Zou L; Li J; Yuan T; Zhou Y; Li X; Yang H Nanoscale; 2014 Sep; 6(18):10686-92. PubMed ID: 25092107 [TBL] [Abstract][Full Text] [Related]
10. Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. Wang JX; Inada H; Wu L; Zhu Y; Choi Y; Liu P; Zhou WP; Adzic RR J Am Chem Soc; 2009 Dec; 131(47):17298-302. PubMed ID: 19899768 [TBL] [Abstract][Full Text] [Related]
11. Electrochemical synthesis of core-shell catalysts for electrocatalytic applications. Kulp C; Chen X; Puschhof A; Schwamborn S; Somsen C; Schuhmann W; Bron M Chemphyschem; 2010 Sep; 11(13):2854-61. PubMed ID: 20408156 [TBL] [Abstract][Full Text] [Related]
12. Intermetallics as novel supports for Pt monolayer O2 reduction electrocatalysts: potential for significantly improving properties. Ghosh T; Vukmirovic MB; DiSalvo FJ; Adzic RR J Am Chem Soc; 2010 Jan; 132(3):906-7. PubMed ID: 20039609 [TBL] [Abstract][Full Text] [Related]
13. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. Kim J; Lee Y; Sun S J Am Chem Soc; 2010 Apr; 132(14):4996-7. PubMed ID: 20297818 [TBL] [Abstract][Full Text] [Related]
14. Synthesis of highly active and stable Au-PtCu core-shell nanoparticles for oxygen reduction reaction. Hsu C; Huang C; Hao Y; Liu F Phys Chem Chem Phys; 2012 Nov; 14(42):14696-701. PubMed ID: 23032948 [TBL] [Abstract][Full Text] [Related]
15. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction. Zhao X; Chen S; Fang Z; Ding J; Sang W; Wang Y; Zhao J; Peng Z; Zeng J J Am Chem Soc; 2015 Mar; 137(8):2804-7. PubMed ID: 25675212 [TBL] [Abstract][Full Text] [Related]
16. Building Durable Multimetallic Electrocatalysts from Intermetallic Seeds. Bueno SLA; Ashberry HM; Shafei I; Skrabalak SE Acc Chem Res; 2021 Apr; 54(7):1662-1672. PubMed ID: 33377763 [TBL] [Abstract][Full Text] [Related]
17. Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. Wang JX; Ma C; Choi Y; Su D; Zhu Y; Liu P; Si R; Vukmirovic MB; Zhang Y; Adzic RR J Am Chem Soc; 2011 Aug; 133(34):13551-7. PubMed ID: 21780827 [TBL] [Abstract][Full Text] [Related]
18. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis. Wang H; Zhou W; Liu JX; Si R; Sun G; Zhong MQ; Su HY; Zhao HB; Rodriguez JA; Pennycook SJ; Idrobo JC; Li WX; Kou Y; Ma D J Am Chem Soc; 2013 Mar; 135(10):4149-58. PubMed ID: 23428163 [TBL] [Abstract][Full Text] [Related]
19. Pt-decorated PdFe nanoparticles as methanol-tolerant oxygen reduction electrocatalyst. Yang J; Zhou W; Cheng CH; Lee JY; Liu Z ACS Appl Mater Interfaces; 2010 Jan; 2(1):119-26. PubMed ID: 20356228 [TBL] [Abstract][Full Text] [Related]
20. Rh-Doped Pt-Ni Octahedral Nanoparticles: Understanding the Correlation between Elemental Distribution, Oxygen Reduction Reaction, and Shape Stability. Beermann V; Gocyla M; Willinger E; Rudi S; Heggen M; Dunin-Borkowski RE; Willinger MG; Strasser P Nano Lett; 2016 Mar; 16(3):1719-25. PubMed ID: 26854940 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]