These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 23773037)

  • 21. Synthesis-structure-morphology interplay of bimetallic "core-shell" carbon nitride nano-electrocatalysts.
    Di Noto V; Negro E; Polizzi S; Agresti F; Giffin GA
    ChemSusChem; 2012 Dec; 5(12):2451-9. PubMed ID: 23019172
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Chemical dealloying mechanism of bimetallic Pt-Co nanoparticles and enhancement of catalytic activity toward oxygen reduction.
    Lai FJ; Su WN; Sarma LS; Liu DG; Hsieh CA; Lee JF; Hwang BJ
    Chemistry; 2010 Apr; 16(15):4602-11. PubMed ID: 20235238
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pt@Pd(x)Cu(y)/C core-shell electrocatalysts for oxygen reduction reaction in fuel cells.
    Cochell T; Manthiram A
    Langmuir; 2012 Jan; 28(2):1579-87. PubMed ID: 22149212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt3Zn intermetallic nanocrystals.
    Kang Y; Pyo JB; Ye X; Gordon TR; Murray CB
    ACS Nano; 2012 Jun; 6(6):5642-7. PubMed ID: 22559911
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facet-Dependent Deposition of Highly Strained Alloyed Shells on Intermetallic Nanoparticles for Enhanced Electrocatalysis.
    Wang C; Sang X; Gamler JTL; Chen DP; Unocic RR; Skrabalak SE
    Nano Lett; 2017 Sep; 17(9):5526-5532. PubMed ID: 28840730
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In situ atomic-scale observation of oxygen-driven core-shell formation in Pt
    Dai S; You Y; Zhang S; Cai W; Xu M; Xie L; Wu R; Graham GW; Pan X
    Nat Commun; 2017 Aug; 8(1):204. PubMed ID: 28785077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing.
    Xu C; Liu Y; Su F; Liu A; Qiu H
    Biosens Bioelectron; 2011 Sep; 27(1):160-6. PubMed ID: 21778046
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles.
    Taufany F; Pan CJ; Rick J; Chou HL; Tsai MC; Hwang BJ; Liu DG; Lee JF; Tang MT; Lee YC; Chen CI
    ACS Nano; 2011 Dec; 5(12):9370-81. PubMed ID: 22047129
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Resilient High Catalytic Performance of Platinum Nanocatalysts with Porous Graphene Envelope.
    Kim H; Robertson AW; Kim SO; Kim JM; Warner JH
    ACS Nano; 2015 Jun; 9(6):5947-57. PubMed ID: 26027750
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Overcoming Site Heterogeneity In Search of Metal Nanocatalysts.
    Wang S; Omidvar N; Marx E; Xin H
    ACS Comb Sci; 2018 Oct; 20(10):567-572. PubMed ID: 30183261
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ordered bilayer ruthenium-platinum core-shell nanoparticles as carbon monoxide-tolerant fuel cell catalysts.
    Hsieh YC; Zhang Y; Su D; Volkov V; Si R; Wu L; Zhu Y; An W; Liu P; He P; Ye S; Adzic RR; Wang JX
    Nat Commun; 2013; 4():2466. PubMed ID: 24045405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. FePt alloy nanoparticles for biosensing: enhancement of vitamin C sensor performance and selectivity by nanoalloying.
    Moghimi N; Leung KT
    Anal Chem; 2013 Jun; 85(12):5974-80. PubMed ID: 23675761
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The growth and enhanced catalytic performance of Au@Pd core-shell nanodendrites.
    Wang H; Sun Z; Yang Y; Su D
    Nanoscale; 2013 Jan; 5(1):139-42. PubMed ID: 23149579
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel approach for the in situ synthesis of Pt-Pd nanoalloys supported on Fe3O4@C core-shell nanoparticles with enhanced catalytic activity for reduction reactions.
    Zhang P; Li R; Huang Y; Chen Q
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2671-8. PubMed ID: 24494932
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Tuning nanoparticle catalysis for the oxygen reduction reaction.
    Guo S; Zhang S; Sun S
    Angew Chem Int Ed Engl; 2013 Aug; 52(33):8526-44. PubMed ID: 23775769
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis.
    Bu L; Zhang N; Guo S; Zhang X; Li J; Yao J; Wu T; Lu G; Ma JY; Su D; Huang X
    Science; 2016 Dec; 354(6318):1410-1414. PubMed ID: 27980207
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxygen reduction electrocatalyst of Pt on Au nanoparticles through spontaneous deposition.
    Dai Y; Chen S
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):823-9. PubMed ID: 25513894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Boosting Bifunctional Catalysis by Integrating Active Faceted Intermetallic Nanocrystals and Strained Pt-Ir Functional Shells.
    Zhu S; Liu Y; Gong Y; Sun Y; Chen K; Liu Y; Liu W; Xia T; Zheng Q; Gao H; Guo H; Wang R
    Small; 2024 Feb; 20(6):e2305062. PubMed ID: 37803476
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of magnetic nanocomposites and alloys from platinum-iron oxide core-shell nanoparticles.
    Teng X; Yang H
    Nanotechnology; 2005 Jul; 16(7):S554-61. PubMed ID: 21727477
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Intermetallic PtFe Electrocatalysts for the Oxygen Reduction Reaction: Ordering Degree-Dependent Performance.
    Song TW; Chen MX; Yin P; Tong L; Zuo M; Chu SQ; Chen P; Liang HW
    Small; 2022 Aug; 18(31):e2202916. PubMed ID: 35810451
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.