These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

252 related articles for article (PubMed ID: 23773037)

  • 41. Lattice Strain Mapping of Platinum Nanoparticles on Carbon and SnO2 Supports.
    Daio T; Staykov A; Guo L; Liu J; Tanaka M; Lyth SM; Sasaki K
    Sci Rep; 2015 Aug; 5():13126. PubMed ID: 26283473
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold.
    Zhang J; Ma H; Zhang D; Liu P; Tian F; Ding Y
    Phys Chem Chem Phys; 2008 Jun; 10(22):3250-5. PubMed ID: 18500402
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis and characterization of Pd@Pt-Ni core-shell octahedra with high activity toward oxygen reduction.
    Choi SI; Shao M; Lu N; Ruditskiy A; Peng HC; Park J; Guerrero S; Wang J; Kim MJ; Xia Y
    ACS Nano; 2014 Oct; 8(10):10363-71. PubMed ID: 25247667
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hydrogen chemisorption on supported platinum, gold, and platinum-gold-alloy catalysts.
    Bus E; van Bokhoven JA
    Phys Chem Chem Phys; 2007 Jun; 9(22):2894-902. PubMed ID: 17538735
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Heterogeneous junction engineering on core-shell nanocatalysts boosts the dye-sensitized solar cell.
    Wu CY; Liu YT; Huang PC; Luo TJ; Lee CH; Yang YW; Wen TC; Chen TY; Lin TL
    Nanoscale; 2013 Oct; 5(19):9181-92. PubMed ID: 23929127
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Gold-promoted structurally ordered intermetallic palladium cobalt nanoparticles for the oxygen reduction reaction.
    Kuttiyiel KA; Sasaki K; Su D; Wu L; Zhu Y; Adzic RR
    Nat Commun; 2014 Nov; 5():5185. PubMed ID: 25373826
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Beneficial Role of Copper in the Enhancement of Durability of Ordered Intermetallic PtFeCu Catalyst for Electrocatalytic Oxygen Reduction.
    Arumugam B; Tamaki T; Yamaguchi T
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16311-21. PubMed ID: 26159178
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Achieving Highly Durable Random Alloy Nanocatalysts through Intermetallic Cores.
    Gamler JTL; Leonardi A; Ashberry HM; Daanen NN; Losovyj Y; Unocic RR; Engel M; Skrabalak SE
    ACS Nano; 2019 Apr; 13(4):4008-4017. PubMed ID: 30957486
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Pt nanoparticle-dispersed graphene-wrapped MWNT composites as oxygen reduction reaction electrocatalyst in proton exchange membrane fuel cell.
    Aravind SS; Ramaprabhu S
    ACS Appl Mater Interfaces; 2012 Aug; 4(8):3805-10. PubMed ID: 22850438
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of homogeneous FePt nanoparticles using a nitrile ligand.
    Monnier V; Delalande M; Bayle-Guillemaud P; Samson Y; Reiss P
    Small; 2008 Aug; 4(8):1139-42. PubMed ID: 18623297
    [No Abstract]   [Full Text] [Related]  

  • 51. A comprehensive search for stable Pt-Pd nanoalloy configurations and their use as tunable catalysts.
    Tan TL; Wang LL; Johnson DD; Bai K
    Nano Lett; 2012 Sep; 12(9):4875-80. PubMed ID: 22894175
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transmission electron microscopy studies of the nanoscale structure and chemistry of Pt50Ru50 electrocatalysts.
    Stroud RM; Long JW; Swider-Lyons KE; Rolison DR
    Microsc Microanal; 2002 Feb; 8(1):50-7. PubMed ID: 12533204
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quantitating the lattice strain dependence of monolayer Pt shell activity toward oxygen reduction.
    Wang X; Orikasa Y; Takesue Y; Inoue H; Nakamura M; Minato T; Hoshi N; Uchimoto Y
    J Am Chem Soc; 2013 Apr; 135(16):5938-41. PubMed ID: 23560913
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Enhanced stability of (111)-surface-dominant core-shell nanoparticle catalysts towards the oxygen reduction reaction.
    Wu J; Shi M; Yin X; Yang H
    ChemSusChem; 2013 Oct; 6(10):1888-92. PubMed ID: 23881777
    [No Abstract]   [Full Text] [Related]  

  • 55. Synthesis and physicochemical characterizations of nanostructured Pt/Al2O3-CeO2 catalysts for total oxidation of VOCs.
    Abbasi Z; Haghighi M; Fatehifar E; Saedy S
    J Hazard Mater; 2011 Feb; 186(2-3):1445-54. PubMed ID: 21216099
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Controlled synthesis of porous platinum nanostructures for catalytic applications.
    Cao Y; Zhang J; Yang Y; Huang Z; Long NV; Nogami M
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1194-208. PubMed ID: 24749422
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Sinter-free phase conversion and scanning transmission electron microscopy of FePt nanoparticle monolayers.
    Johnston-Peck AC; Scarel G; Wang J; Parsons GN; Tracy JB
    Nanoscale; 2011 Oct; 3(10):4142-9. PubMed ID: 21869998
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimizing core-shell nanoparticle catalysts with a genetic algorithm.
    Froemming NS; Henkelman G
    J Chem Phys; 2009 Dec; 131(23):234103. PubMed ID: 20025310
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Supported noble metals on hydrogen-treated TiO2 nanotube arrays as highly ordered electrodes for fuel cells.
    Zhang C; Yu H; Li Y; Gao Y; Zhao Y; Song W; Shao Z; Yi B
    ChemSusChem; 2013 Apr; 6(4):659-66. PubMed ID: 23450835
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Charge redistribution in core-shell nanoparticles to promote oxygen reduction.
    Tang W; Henkelman G
    J Chem Phys; 2009 May; 130(19):194504. PubMed ID: 19466840
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.