These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 23773091)

  • 1. Climate change, multiple stressors, and the decline of ectotherms.
    Rohr JR; Palmer BD
    Conserv Biol; 2013 Aug; 27(4):741-51. PubMed ID: 23773091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aquatic herbicide exposure increases salamander desiccation risk eight months later in a terrestrial environment.
    Rohr JR; Palmer BD
    Environ Toxicol Chem; 2005 May; 24(5):1253-8. PubMed ID: 16111008
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review and synthesis of the effects of climate change on amphibians.
    Li Y; Cohen JM; Rohr JR
    Integr Zool; 2013 Jun; 8(2):145-61. PubMed ID: 23731811
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lethal and sublethal effects of atrazine, carbaryl, endosulfan, and octylphenol on the streamside salamander (Ambystoma barbouri).
    Rohr JR; Elskus AA; Shepherd BS; Crowley PH; McCarthy TM; Niedzwiecki JH; Sager T; Sih A; Palmer BD
    Environ Toxicol Chem; 2003 Oct; 22(10):2385-92. PubMed ID: 14552003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct impacts of climatic warming on heat stress in endothermic species: seabirds as bioindicators of changing thermoregulatory constraints.
    Oswald SA; Arnold JM
    Integr Zool; 2012 Jun; 7(2):121-36. PubMed ID: 22691196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calling behaviour under climate change: geographical and seasonal variation of calling temperatures in ectotherms.
    Llusia D; Márquez R; Beltrán JF; Benítez M; do Amaral JP
    Glob Chang Biol; 2013 Sep; 19(9):2655-74. PubMed ID: 23712567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of atrazine and iridovirus infection on survival and life-history traits of the long-toed salamander (Ambystoma macrodactylum).
    Forson D; Storfer A
    Environ Toxicol Chem; 2006 Jan; 25(1):168-73. PubMed ID: 16494238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can temperate insects take the heat? A case study of the physiological and behavioural responses in a common ant, Iridomyrmex purpureus (Formicidae), with potential climate change.
    Andrew NR; Hart RA; Jung MP; Hemmings Z; Terblanche JS
    J Insect Physiol; 2013 Sep; 59(9):870-80. PubMed ID: 23806604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The deal with diel: Temperature fluctuations, asymmetrical warming, and ubiquitous metals contaminants.
    Hallman TA; Brooks ML
    Environ Pollut; 2015 Nov; 206():88-94. PubMed ID: 26142755
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of 24-h exposure to carbaryl or atrazine on the locomotor performance and overwinter growth and survival of juvenile spotted salamanders (Ambystoma maculatum).
    Mitchkash MG; McPeek T; Boone MD
    Environ Toxicol Chem; 2014 Mar; 33(3):548-52. PubMed ID: 24194095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of atrazine on spotted salamander embryos and their symbiotic alga.
    Olivier HM; Moon BR
    Ecotoxicology; 2010 Apr; 19(4):654-61. PubMed ID: 19924530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure, postexposure, and density-mediated effects of atrazine on amphibians: breaking down net effects into their parts.
    Rohr JR; Sager T; Sesterhenn TM; Palmer BD
    Environ Health Perspect; 2006 Jan; 114(1):46-50. PubMed ID: 16393657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significance of pre-Quaternary climate change for montane species diversity: insights from Asian salamanders (Salamandridae: Pachytriton).
    Wu Y; Wang Y; Jiang K; Hanken J
    Mol Phylogenet Evol; 2013 Jan; 66(1):380-90. PubMed ID: 23110935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of acclimation on heat-escape temperatures of two aphid species: Implications for estimating behavioral response of insects to climate warming.
    Ma G; Ma CS
    J Insect Physiol; 2012 Mar; 58(3):303-9. PubMed ID: 21939662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microhabitats reduce animal's exposure to climate extremes.
    Scheffers BR; Edwards DP; Diesmos A; Williams SE; Evans TA
    Glob Chang Biol; 2014 Feb; 20(2):495-503. PubMed ID: 24132984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal tolerance in a south-east African population of the tsetse fly Glossina pallidipes (Diptera, Glossinidae): implications for forecasting climate change impacts.
    Terblanche JS; Clusella-Trullas S; Deere JA; Chown SL
    J Insect Physiol; 2008 Jan; 54(1):114-27. PubMed ID: 17889900
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential for thermal tolerance to mediate climate change effects on three members of a cool temperate lizard genus, Niveoscincus.
    Caldwell AJ; While GM; Beeton NJ; Wapstra E
    J Therm Biol; 2015 Aug; 52():14-23. PubMed ID: 26267494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptation to hot climate and strategies to alleviate heat stress in livestock production.
    Renaudeau D; Collin A; Yahav S; de Basilio V; Gourdine JL; Collier RJ
    Animal; 2012 May; 6(5):707-28. PubMed ID: 22558920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of climatic and soil conditions on environmental fate of atrazine used under plantation forestry in Australia.
    Kookana R; Holz G; Barnes C; Bubb K; Fremlin R; Boardman B
    J Environ Manage; 2010 Dec; 91(12):2649-56. PubMed ID: 20727665
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.