These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 23773206)
21. Cr(VI) resistance and removal by indigenous bacteria isolated from chromium-contaminated soil. Long D; Tang X; Cai K; Chen G; Shen C; Shi J; Chen L; Chen Y J Microbiol Biotechnol; 2013 Aug; 23(8):1123-32. PubMed ID: 23727810 [TBL] [Abstract][Full Text] [Related]
22. Hexavalent chromium reduction by Bacillus sp. strain FM1 isolated from heavy-metal contaminated soil. Masood F; Malik A Bull Environ Contam Toxicol; 2011 Jan; 86(1):114-9. PubMed ID: 21181113 [TBL] [Abstract][Full Text] [Related]
23. Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure. Martins M; Faleiro ML; Chaves S; Tenreiro R; Santos E; Costa MC J Hazard Mater; 2010 Apr; 176(1-3):1065-72. PubMed ID: 20036051 [TBL] [Abstract][Full Text] [Related]
24. Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. Camargo FA; Bento FM; Okeke BC; Frankenberger WT J Environ Qual; 2003; 32(4):1228-33. PubMed ID: 12931876 [TBL] [Abstract][Full Text] [Related]
25. Bioremediation of petroleum-contaminated soil by a combined system of biostimulation-bioaugmentation with yeast. Fan MY; Xie RJ; Qin G Environ Technol; 2014; 35(1-4):391-9. PubMed ID: 24600879 [TBL] [Abstract][Full Text] [Related]
26. Cr(VI) reduction from contaminated soils by Aspergillus sp. N2 and Penicillium sp. N3 isolated from chromium deposits. Fukuda T; Ishino Y; Ogawa A; Tsutsumi K; Morita H J Gen Appl Microbiol; 2008 Oct; 54(5):295-303. PubMed ID: 19029771 [TBL] [Abstract][Full Text] [Related]
27. Chromium accumulation by the hyperaccumulator plant Leersia hexandra Swartz. Zhang XH; Liu J; Huang HT; Chen J; Zhu YN; Wang DQ Chemosphere; 2007 Apr; 67(6):1138-43. PubMed ID: 17207838 [TBL] [Abstract][Full Text] [Related]
28. Effects of alternating wetting and drying versus continuous flooding on chromium fate in paddy soils. Xiao W; Ye X; Yang X; Li T; Zhao S; Zhang Q Ecotoxicol Environ Saf; 2015 Mar; 113():439-45. PubMed ID: 25546832 [TBL] [Abstract][Full Text] [Related]
29. Isolation and characterization of Cr(VI)-reducing actinomycetes from estuarine sediments. Terahara T; Xu X; Kobayashi T; Imada C Appl Biochem Biotechnol; 2015 Apr; 175(7):3297-309. PubMed ID: 25672321 [TBL] [Abstract][Full Text] [Related]
30. The enhanced effect of key microorganisms in chromium contaminated soil in Cr(VI) reduction. Gan M; Zhou Y; Huang D; He P; Tang B; Cai Y; Zhu J Chemosphere; 2024 Aug; 362():142682. PubMed ID: 38914286 [TBL] [Abstract][Full Text] [Related]
31. Remediation potential of immobilized bacterial consortium with biochar as carrier in pyrene-Cr(VI) co-contaminated soil. Wang C; Gu L; Ge S; Liu X; Zhang X; Chen X Environ Technol; 2019 Jul; 40(18):2345-2353. PubMed ID: 29465023 [TBL] [Abstract][Full Text] [Related]
32. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure. Morales DK; Ocampo W; Zambrano MM J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449 [TBL] [Abstract][Full Text] [Related]
33. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+. Camargo FA; Okeke BC; Bento FM; Frankenberger WT Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851 [TBL] [Abstract][Full Text] [Related]
34. Chromium-microorganism interactions in soils: remediation implications. Kamaludeen SP; Megharaj M; Juhasz AL; Sethunathan N; Naidu R Rev Environ Contam Toxicol; 2003; 178():93-164. PubMed ID: 12868782 [TBL] [Abstract][Full Text] [Related]
35. In situ reduction of chromium(VI) in heavily contaminated soils through organic carbon amendment. Tokunaga TK; Wan J; Firestone MK; Hazen TC; Olson KR; Herman DJ; Sutton SR; Lanzirotti A J Environ Qual; 2003; 32(5):1641-9. PubMed ID: 14535304 [TBL] [Abstract][Full Text] [Related]
36. Acetate biostimulation as an effective treatment for cleaning up alkaline soil highly contaminated with Cr(VI). Lara P; Morett E; Juárez K Environ Sci Pollut Res Int; 2017 Nov; 24(33):25513-25521. PubMed ID: 27525740 [TBL] [Abstract][Full Text] [Related]
37. Microbial reduction of hexavalent chromium by landfill leachate. Li Y; Low GK; Scott JA; Amal R J Hazard Mater; 2007 Apr; 142(1-2):153-9. PubMed ID: 17046156 [TBL] [Abstract][Full Text] [Related]
38. Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. Long D; Tang X; Cai K; Chen G; Chen L; Duan D; Zhu J; Chen Y J Hazard Mater; 2013 Jul; 256-257():24-32. PubMed ID: 23669787 [TBL] [Abstract][Full Text] [Related]
39. Improvement of rice plant productivity by native Cr(VI) reducing and plant growth promoting soil bacteria Enterobacter cloacae. Pattnaik S; Dash D; Mohapatra S; Pattnaik M; Marandi AK; Das S; Samantaray DP Chemosphere; 2020 Feb; 240():124895. PubMed ID: 31550588 [TBL] [Abstract][Full Text] [Related]
40. A Bacillus strain TCL isolated from Jharia coalmine with remarkable stress responses, chromium reduction capability and bioremediation potential. Banerjee S; Misra A; Chaudhury S; Dam B J Hazard Mater; 2019 Apr; 367():215-223. PubMed ID: 30594722 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]