These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 23773443)

  • 1. Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata): implications of redox insensitive end products.
    Gomes PI; Asaeda T
    Chemosphere; 2013 Aug; 92(10):1328-34. PubMed ID: 23773443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chemical fractionation and heavy metal accumulation in the plant of Sesamum indicum (L.) var. T55 grown on soil amended with tannery sludge: Selection of single extractants.
    Gupta AK; Sinha S
    Chemosphere; 2006 Jun; 64(1):161-73. PubMed ID: 16330080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heavy metals (Zn, Pb, Cd and Cr) in fish, water and sediments sampled form Southern Caspian Sea, Iran.
    Tabari S; Saravi SS; Bandany GA; Dehghan A; Shokrzadeh M
    Toxicol Ind Health; 2010 Nov; 26(10):649-56. PubMed ID: 20639278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of heavy metals on the production of extracellular polymer substances in the processes of heavy metal ions elimination.
    Mikes J; Siglova M; Cejkova A; Masak J; Jirku V
    Water Sci Technol; 2005; 52(10-11):151-6. PubMed ID: 16459787
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of the heavy metal phytoextraction capacity of two forage species growing in an hydroponic environment.
    Bonfranceschi BA; Flocco CG; Donati ER
    J Hazard Mater; 2009 Jun; 165(1-3):366-71. PubMed ID: 19010592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal and accumulation of As, Cd and Cr by Typha latifolia.
    Leura-Vicencio A; Alonso-Castro AJ; Carranza-Álvarez C; Loredo-Portales R; Alfaro-De la Torre MC; García-De la Cruz RF
    Bull Environ Contam Toxicol; 2013 Jun; 90(6):650-3. PubMed ID: 23400863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation potential of charophytes: bioaccumulation and toxicity studies of cadmium, lead and zinc.
    Sooksawat N; Meetam M; Kruatrachue M; Pokethitiyook P; Nathalang K
    J Environ Sci (China); 2013 Mar; 25(3):596-604. PubMed ID: 23923434
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phytoremediation efficiency of Portulaca tuberosa rox and Portulaca oleracea L. naturally growing in an industrial effluent irrigated area in Vadodra, Gujrat, India.
    Tiwari KK; Dwivedi S; Mishra S; Srivastava S; Tripathi RD; Singh NK; Chakraborty S
    Environ Monit Assess; 2008 Dec; 147(1-3):15-22. PubMed ID: 18193484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accumulation of heavy metals (Cu, Cr, Pb and Cd) in freshwater micro algae (Chlorella sp.).
    Kumar RM; Frankilin J; Raj SP
    J Environ Sci Eng; 2013 Jul; 55(3):371-6. PubMed ID: 25509955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simultaneous removal of As, Cd, Cr, Cu, Ni and Zn from stormwater: experimental comparison of 11 different sorbents.
    Genç-Fuhrman H; Mikkelsen PS; Ledin A
    Water Res; 2007 Feb; 41(3):591-602. PubMed ID: 17173951
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of canal sediments contaminated with heavy metals: fungal versus bacterial bioleaching techniques.
    Sabra N; Dubourguier HC; Duval MN; Hamieh T
    Environ Technol; 2011; 32(11-12):1307-24. PubMed ID: 21970173
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bioremediation approach using charophytes-preliminary laboratory and field studies of mine drainage water from the Mansfeld Region, Germany.
    Herbst A; Patzelt L; Schoebe S; Schubert H; von Tümpling W
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34983-34992. PubMed ID: 31664669
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phytoremediation potential of Lemna minor L. for heavy metals.
    Bokhari SH; Ahmad I; Mahmood-Ul-Hassan M; Mohammad A
    Int J Phytoremediation; 2016; 18(1):25-32. PubMed ID: 26114480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the phytoremediation potential of dominant plant species growing in a chromium salt-producing factory wasteland, China.
    Yan X; Wang J; Song H; Peng Y; Zuo S; Gao T; Duan X; Qin D; Dong J
    Environ Sci Pollut Res Int; 2020 Mar; 27(7):7657-7671. PubMed ID: 31889268
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cadmium stabilization with nursery stocks through transplantation: a new approach to phytoremediation.
    Guo B; Liang Y; Fu Q; Ding N; Liu C; Lin Y; Li H; Li N
    J Hazard Mater; 2012 Jan; 199-200():233-9. PubMed ID: 22138169
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phycoremediation of Chromium (VI) by Nitella and impact of calcium encrustation.
    Gomes PI; Asaeda T
    J Hazard Mater; 2009 Jul; 166(2-3):1332-8. PubMed ID: 19157705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: can Helianthus annuus hyperaccumulate multiple heavy metals?
    January MC; Cutright TJ; Van Keulen H; Wei R
    Chemosphere; 2008 Jan; 70(3):531-7. PubMed ID: 17697697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining.
    Ha NT; Sakakibara M; Sano S
    Bioresour Technol; 2011 Feb; 102(3):2228-34. PubMed ID: 21050745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sequential extraction of heavy metals during composting of sewage sludge.
    Amir S; Hafidi M; Merlina G; Revel JC
    Chemosphere; 2005 May; 59(6):801-10. PubMed ID: 15811408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotic Strategies for Toxic Heavy Metal Decontamination.
    Mishra RK; Sharma V
    Recent Pat Biotechnol; 2017; 11(3):218-228. PubMed ID: 28413994
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.