These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 23773834)

  • 21. Achieving rapid thiosulfate-driven denitrification (TDD) in a granular sludge system.
    Qian J; Bai L; Zhang M; Chen L; Yan X; Sun R; Zhang M; Chen GH; Wu D
    Water Res; 2021 Feb; 190():116716. PubMed ID: 33290906
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Settling behaviour of aerobic granular sludge.
    Nor Anuar A; Ujang Z; van Loosdrecht MC; de Kreuk MK
    Water Sci Technol; 2007; 56(7):55-63. PubMed ID: 17951868
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Feasibility and optimization of a novel upflow denitrification reactor using denitrifying granular sludge for nitric acid pickling wastewater treatment.
    Zeng B; Jiang Y; Pan Z; Shen L; Lin H
    Bioresour Technol; 2023 Sep; 384():129271. PubMed ID: 37290711
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A comparative study on the formation and characterization of aerobic 4-chloroaniline-degrading granules in SBR and SABR.
    Zhu L; Xu X; Luo W; Tian Z; Lin H; Zhang N
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):867-74. PubMed ID: 18449538
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of partial-denitrification (PD) granular sludge producing nitrite: Effect of loading rates and particle size.
    Cao S; Peng Y; Du R; Zhang H
    Sci Total Environ; 2019 Jun; 671():510-518. PubMed ID: 30933806
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simultaneous nitrogen and phosphate removal in aerobic granular sludge reactors operated at different temperatures.
    Bassin JP; Kleerebezem R; Dezotti M; van Loosdrecht MC
    Water Res; 2012 Aug; 46(12):3805-16. PubMed ID: 22591819
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formaldehyde and urea removal in a denitrifying granular sludge blanket reactor.
    Eiroa M; Kennes C; Veiga MC
    Water Res; 2004 Sep; 38(16):3495-502. PubMed ID: 15325175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The influence of settling time on the formation of aerobic granules.
    McSwain BS; Irvine RL; Wilderer PA
    Water Sci Technol; 2004; 50(10):195-202. PubMed ID: 15656313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of partial-denitrification (PD) granular sludge from low-strength nitrate wastewater: The influence of loading rates.
    Du R; Cao S; Zhang H; Peng Y
    J Hazard Mater; 2020 Feb; 384():121273. PubMed ID: 31585283
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Granulation process in an expanded granular sludge blanket (EGSB) reactor for domestic sewage treatment: Impact of extracellular polymeric substances compositions and evolution of microbial population.
    Xu H; Liu Y; Gao Y; Li F; Yang B; Wang M; Ma C; Tian Q; Song X; Sand W
    Bioresour Technol; 2018 Dec; 269():153-161. PubMed ID: 30172178
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anaerobic/oxic/anoxic granular sludge process as an effective nutrient removal process utilizing denitrifying polyphosphate-accumulating organisms.
    Kishida N; Kim J; Tsuneda S; Sudo R
    Water Res; 2006 Jul; 40(12):2303-10. PubMed ID: 16766009
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparison of biological removal via nitrite with real-time control using aerobic granular sludge and flocculent activated sludge.
    Gao D; Yuan X; Liang H; Wu WM
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1645-52. PubMed ID: 20972676
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor.
    Wang J; Wang X; Zhao Z; Li J
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):679-85. PubMed ID: 18465123
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge.
    Cassidy DP; Belia E
    Water Res; 2005 Nov; 39(19):4817-23. PubMed ID: 16278003
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enhanced thermophilic denitrification performance and potential microbial mechanism in denitrifying granular sludge system.
    Shi S; Lin Z; Zhou J; Fan X; Huang Y; Zhou J
    Bioresour Technol; 2022 Jan; 344(Pt A):126190. PubMed ID: 34710607
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effect and biological mechanism of granular sludge size on performance of autotrophic nitrogen removal system.
    Ya-Juan X; Jun-Yuan J; Ping Z; Lan W; Abbas G; Zhang J; Ru W; Zhan-Fei H
    Biodegradation; 2018 Aug; 29(4):339-347. PubMed ID: 29855740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracellular polymeric substances (EPS) in upflow anaerobic sludge blanket (UASB) reactors operated under high salinity conditions.
    Ismail SB; de La Parra CJ; Temmink H; van Lier JB
    Water Res; 2010 Mar; 44(6):1909-17. PubMed ID: 20015531
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological denitrification in a sequencing batch reactor.
    Dangcong P; Yi W; Hao W; Xiaochang W
    Water Sci Technol; 2004; 50(10):67-72. PubMed ID: 15656297
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optimizing sequencing batch reactor (SBR) reactor operation for treatment of dairy wastewater with aerobic granular sludge.
    Wichern M; Lübken M; Horn H
    Water Sci Technol; 2008; 58(6):1199-206. PubMed ID: 18845857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The morphological and settling properties of ANAMMOX granular sludge in high-rate reactors.
    Lu HF; Ji QX; Ding S; Zheng P
    Bioresour Technol; 2013 Sep; 143():592-7. PubMed ID: 23835264
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.