These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 23773851)

  • 1. Design and validation of an intelligent wheelchair towards a clinically-functional outcome.
    Boucher P; Atrash A; Kelouwani S; Honoré W; Nguyen H; Villemure J; Routhier F; Cohen P; Demers L; Forget R; Pineau J
    J Neuroeng Rehabil; 2013 Jun; 10(1):58. PubMed ID: 23773851
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating gaze-driven power wheelchair with navigation support for persons with disabilities.
    Wästlund E; Sponseller K; Pettersson O; Bared A
    J Rehabil Res Dev; 2015; 52(7):815-26. PubMed ID: 26744901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent single switch wheelchair navigation.
    Ka HW; Simpson R; Chung Y
    Disabil Rehabil Assist Technol; 2012 Nov; 7(6):501-6. PubMed ID: 22356240
    [TBL] [Abstract][Full Text] [Related]  

  • 4. IntellWheels: modular development platform for intelligent wheelchairs.
    Braga RA; Petry M; Reis LP; Moreira AP
    J Rehabil Res Dev; 2011; 48(9):1061-76. PubMed ID: 22234711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of an intelligent wheelchair system for older adults with cognitive impairments.
    How TV; Wang RH; Mihailidis A
    J Neuroeng Rehabil; 2013 Aug; 10():90. PubMed ID: 23924489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A facial expression controlled wheelchair for people with disabilities.
    Rabhi Y; Mrabet M; Fnaiech F
    Comput Methods Programs Biomed; 2018 Oct; 165():89-105. PubMed ID: 30337084
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vision based interface system for hands free control of an Intelligent Wheelchair.
    Ju JS; Shin Y; Kim EY
    J Neuroeng Rehabil; 2009 Aug; 6():33. PubMed ID: 19660132
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skills based evaluation of alternative input methods to command a semi-autonomous electric wheelchair.
    Rojas M; Ponce P; Molina A
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4593-4596. PubMed ID: 28269298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intelligent power wheelchair use in long-term care: potential users' experiences and perceptions.
    Rushton PW; Mortenson BW; Viswanathan P; Wang RH; Miller WC; Hurd Clarke L;
    Disabil Rehabil Assist Technol; 2017 Oct; 12(7):740-746. PubMed ID: 27982717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance evaluation of the Personal Mobility and Manipulation Appliance (PerMMA).
    Wang H; Xu J; Grindle G; Vazquez J; Salatin B; Kelleher A; Ding D; Collins DM; Cooper RA
    Med Eng Phys; 2013 Nov; 35(11):1613-9. PubMed ID: 23769146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of joystick control during the performance of powered wheelchair driving tasks.
    Sorrento GU; Archambault PS; Routhier F; Dessureault D; Boissy P
    J Neuroeng Rehabil; 2011 May; 8():31. PubMed ID: 21609435
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared control strategies for human-machine interface in an intelligent wheelchair.
    Nguyen AV; Nguyen LB; Su S; Nguyen HT
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():3638-41. PubMed ID: 24110518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous function of wheelchair-mounted robotic manipulators to perform daily activities.
    Chung CS; Wang H; Cooper RA
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650378. PubMed ID: 24187197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. SWADAPT2: benefits of a collision avoidance assistance for powered wheelchair users in driving difficulty.
    Fraudet B; Leblong E; Piette P; Nicolas B; Devigne L; Babel M; Pasteau F; Routhier F; Gallien P
    Disabil Rehabil Assist Technol; 2024 Jul; 19(5):1907-1915. PubMed ID: 37681970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and user validation of driving tasks for a power wheelchair simulator.
    Archambault PS; Blackburn É; Reid D; Routhier F; Miller WC
    Disabil Rehabil; 2017 Jul; 39(15):1549-1556. PubMed ID: 27669905
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A scoping review of powered wheelchair driving tasks and performance-based outcomes.
    Bigras C; Owonuwa DD; Miller WC; Archambault PS
    Disabil Rehabil Assist Technol; 2020 Jan; 15(1):76-91. PubMed ID: 30729829
    [No Abstract]   [Full Text] [Related]  

  • 17. Prediction of user preference over shared-control paradigms for a robotic wheelchair.
    Erdogan A; Argall BD
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1106-1111. PubMed ID: 28813969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Case-based reasoning emulation of persons for wheelchair navigation.
    Peula JM; Urdiales C; Herrero I; Fernandez-Carmona M; Sandoval F
    Artif Intell Med; 2012 Oct; 56(2):109-21. PubMed ID: 23068883
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Towards an intelligent wheelchair system for users with cerebral palsy.
    Montesano L; Díaz M; Bhaskar S; Minguez J
    IEEE Trans Neural Syst Rehabil Eng; 2010 Apr; 18(2):193-202. PubMed ID: 20071276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An intelligent powered wheelchair to enable mobility of cognitively impaired older adults: an anticollision system.
    Mihailidis A; Elinas P; Boger J; Hoey J
    IEEE Trans Neural Syst Rehabil Eng; 2007 Mar; 15(1):136-43. PubMed ID: 17436886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.