BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 23774017)

  • 1. [Advances on SUMO substrates in Arabidopsis].
    Guo MX; Fu YF
    Yi Chuan; 2013 Jun; 35(6):727-34. PubMed ID: 23774017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstitution of Arabidopsis thaliana SUMO pathways in E. coli: functional evaluation of SUMO machinery proteins and mapping of SUMOylation sites by mass spectrometry.
    Okada S; Nagabuchi M; Takamura Y; Nakagawa T; Shinmyozu K; Nakayama J; Tanaka K
    Plant Cell Physiol; 2009 Jun; 50(6):1049-61. PubMed ID: 19376783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversification of SUMO-activating enzyme in Arabidopsis: implications in SUMO conjugation.
    Castaño-Miquel L; Seguí J; Manrique S; Teixeira I; Carretero-Paulet L; Atencio F; Lois LM
    Mol Plant; 2013 Sep; 6(5):1646-60. PubMed ID: 23482370
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana.
    Castro PH; Verde N; Lourenço T; Magalhães AP; Tavares RM; Bejarano ER; Azevedo H
    Plant Cell Physiol; 2015 Dec; 56(12):2297-311. PubMed ID: 26468507
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diversity of the SUMOylation machinery in plants.
    Lois LM
    Biochem Soc Trans; 2010 Feb; 38(Pt 1):60-4. PubMed ID: 20074036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome-wide screens for small ubiquitin-like modifier (SUMO) substrates identify Arabidopsis proteins implicated in diverse biological processes.
    Elrouby N; Coupland G
    Proc Natl Acad Sci U S A; 2010 Oct; 107(40):17415-20. PubMed ID: 20855607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The post-translational modification, SUMOylation, and cancer (Review).
    Han ZJ; Feng YH; Gu BH; Li YM; Chen H
    Int J Oncol; 2018 Apr; 52(4):1081-1094. PubMed ID: 29484374
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mass spectrometric identification of SUMO substrates provides insights into heat stress-induced SUMOylation in plants.
    Miller MJ; Vierstra RD
    Plant Signal Behav; 2011 Jan; 6(1):130-3. PubMed ID: 21270536
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Roles for SUMO modification during senescence.
    Andreou AM; Tavernarakis N
    Adv Exp Med Biol; 2010; 694():160-71. PubMed ID: 20886763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional characterization of the SIZ/PIAS-type SUMO E3 ligases, OsSIZ1 and OsSIZ2 in rice.
    Park HC; Kim H; Koo SC; Park HJ; Cheong MS; Hong H; Baek D; Chung WS; Kim DH; Bressan RA; Lee SY; Bohnert HJ; Yun DJ
    Plant Cell Environ; 2010 Nov; 33(11):1923-34. PubMed ID: 20561251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New insights into the role of the small ubiquitin-like modifier (SUMO) in plants.
    Park HJ; Yun DJ
    Int Rev Cell Mol Biol; 2013; 300():161-209. PubMed ID: 23273862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of small ubiquitin-like modifier substrates with diverse functions using the Xenopus egg extract system.
    Ma L; Aslanian A; Sun H; Jin M; Shi Y; Yates JR; Hunter T
    Mol Cell Proteomics; 2014 Jul; 13(7):1659-75. PubMed ID: 24797264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SUMO proteases: uncovering the roles of deSUMOylation in plants.
    Yates G; Srivastava AK; Sadanandom A
    J Exp Bot; 2016 Apr; 67(9):2541-8. PubMed ID: 27012284
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Small ubiquitin-like modifier modulates abscisic acid signaling in Arabidopsis.
    Lois LM; Lima CD; Chua NH
    Plant Cell; 2003 Jun; 15(6):1347-59. PubMed ID: 12782728
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SUMO-SIM interactions: From structure to biological functions.
    Lascorz J; Codina-Fabra J; Reverter D; Torres-Rosell J
    Semin Cell Dev Biol; 2022 Dec; 132():193-202. PubMed ID: 34840078
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SUMO, a heavyweight player in plant abiotic stress responses.
    Castro PH; Tavares RM; Bejarano ER; Azevedo H
    Cell Mol Life Sci; 2012 Oct; 69(19):3269-83. PubMed ID: 22903295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessing the Role of Paralog-Specific Sumoylation of HDAC1.
    Citro S; Chiocca S
    Methods Mol Biol; 2017; 1510():329-337. PubMed ID: 27761832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploiting protein modification systems to boost crop productivity: SUMO proteases in focus.
    Garrido E; Srivastava AK; Sadanandom A
    J Exp Bot; 2018 Aug; 69(19):4625-4632. PubMed ID: 29897480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SUMO: From Bench to Bedside.
    Chang HM; Yeh ETH
    Physiol Rev; 2020 Oct; 100(4):1599-1619. PubMed ID: 32666886
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SUMOylation Inhibition Mediated by Disruption of SUMO E1-E2 Interactions Confers Plant Susceptibility to Necrotrophic Fungal Pathogens.
    Castaño-Miquel L; Mas A; Teixeira I; Seguí J; Perearnau A; Thampi BN; Schapire AL; Rodrigo N; La Verde G; Manrique S; Coca M; Lois LM
    Mol Plant; 2017 May; 10(5):709-720. PubMed ID: 28343913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.