These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 23774036)

  • 1. Lipases efficiently stearate and cutinases acetylate the surface of arabinoxylan films.
    Stepan AM; Anasontzis GE; Matama T; Cavaco-Paulo A; Olsson L; Gatenholm P
    J Biotechnol; 2013 Aug; 167(1):16-23. PubMed ID: 23774036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A spectrophotometric transesterification-based assay for lipases in organic solvent.
    Goujard L; Villeneuve P; Barea B; Lecomte J; Pina M; Claude S; Le Petit J; Ferré E
    Anal Biochem; 2009 Feb; 385(1):161-7. PubMed ID: 19013125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Enzyme-catalyzed synthesis of ASGPR ligand-targeted modifier in non-aqueous medium].
    Cheng Y; Wu W; Zhang DQ; Mai YZ
    Yao Xue Xue Bao; 2010 Sep; 45(9):1134-8. PubMed ID: 21351570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent.
    Martinez C; De Geus P; Lauwereys M; Matthyssens G; Cambillau C
    Nature; 1992 Apr; 356(6370):615-8. PubMed ID: 1560844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cutinase: from molecular level to bioprocess development.
    Carvalho CM; Aires-Barros MR; Cabral JM
    Biotechnol Bioeng; 1999; 66(1):17-34. PubMed ID: 10556791
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of activities and conformation of lipases treated with sub- and supercritical carbon dioxide.
    Chen D; Peng C; Zhang H; Yan Y
    Appl Biochem Biotechnol; 2013 Apr; 169(7):2189-201. PubMed ID: 23417391
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Miniemulsion as efficient system for enzymatic synthesis of acid alkyl esters.
    de Barros DP; Fonseca LP; Cabral JM; Aschenbrenner EM; Weiss CK; Landfester K
    Biotechnol Bioeng; 2010 Jul; 106(4):507-15. PubMed ID: 20503297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic hydrolysis of polyester: Degradation of poly(ε-caprolactone) by Candida antarctica lipase and Fusarium solani cutinase.
    Shi K; Jing J; Song L; Su T; Wang Z
    Int J Biol Macromol; 2020 Feb; 144():183-189. PubMed ID: 31843602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Humicola insolens cutinase for efficient cellulose acetate deacetylation.
    Shirke AN; Butterfoss GL; Saikia R; Basu A; de Maria L; Svendsen A; Gross RA
    Biotechnol J; 2017 Aug; 12(8):. PubMed ID: 28488758
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct enzymatic acylation of cellulose pretreated in BMIMCl ionic liquid.
    Gremos S; Zarafeta D; Kekos D; Kolisis F
    Bioresour Technol; 2011 Jan; 102(2):1378-82. PubMed ID: 20888759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantization of pH: evidence for acidic activity of triglyceride lipases.
    Poulsen KR; Snabe T; Petersen EI; Fojan P; Neves-Petersen MT; Wimmer R; Petersen SB
    Biochemistry; 2005 Aug; 44(34):11574-80. PubMed ID: 16114894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enzymatic surface hydrolysis of poly(ethylene terephthalate) and bis(benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface active molecules.
    Eberl A; Heumann S; Brückner T; Araujo R; Cavaco-Paulo A; Kaufmann F; Kroutil W; Guebitz GM
    J Biotechnol; 2009 Sep; 143(3):207-12. PubMed ID: 19616594
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optical resolution of 1-arylethanols using transesterification catalyzed by lipases.
    Kano K; Negi S; Kawashima A; Nakamura K
    Enantiomer; 1997; 2(3-4):261-6. PubMed ID: 9676270
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transesterification of oil mixtures catalyzed by microencapsulated cutinase in reversed micelles.
    Badenes SM; Lemos F; Cabral JM
    Biotechnol Lett; 2010 Mar; 32(3):399-403. PubMed ID: 19943181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functionalization of cellulose acetate fibers with engineered cutinases.
    Matamá T; Araújo R; Gübitz GM; Casal M; Cavaco-Paulo A
    Biotechnol Prog; 2010; 26(3):636-43. PubMed ID: 20014432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of additives and mechanical agitation in surface modification of acrylic fibres by cutinase and esterase.
    Matamá T; Vaz F; Gübitz GM; Cavaco-Paulo A
    Biotechnol J; 2006; 1(7-8):842-9. PubMed ID: 16927260
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sol-gel encapsulation: an efficient and versatile immobilization technique for cutinase in non-aqueous media.
    Vidinha P; Augusto V; Almeida M; Fonseca I; Fidalgo A; Ilharco L; Cabral JM; Barreiros S
    J Biotechnol; 2006 Jan; 121(1):23-33. PubMed ID: 16095741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dispersibility and emulsion-stabilizing effect of cellulose nanowhiskers esterified by vinyl acetate and vinyl cinnamate.
    Sèbe G; Ham-Pichavant F; Pecastaings G
    Biomacromolecules; 2013 Aug; 14(8):2937-44. PubMed ID: 23883187
    [TBL] [Abstract][Full Text] [Related]  

  • 19. De novo design, synthesis and screening of a combinatorial library of complementary ligands directed towards the surface of cutinase from Fusarium solani pisi.
    Ruiu L; Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2006; 19(4):372-8. PubMed ID: 16779873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved activity and stability of Rhizopus oryzae lipase via immobilization for citronellol ester synthesis in supercritical carbon dioxide.
    Dhake KP; Deshmukh KM; Patil YP; Singhal RS; Bhanage BM
    J Biotechnol; 2011 Oct; 156(1):46-51. PubMed ID: 21884733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.