BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 23774163)

  • 1. A novel bioelectronic nose based on brain-machine interface using implanted electrode recording in vivo in olfactory bulb.
    Dong Q; Du L; Zhuang L; Li R; Liu Q; Wang P
    Biosens Bioelectron; 2013 Nov; 49():263-9. PubMed ID: 23774163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection and classification of natural odors with an in vivo bioelectronic nose.
    Zhuang L; Guo T; Cao D; Ling L; Su K; Hu N; Wang P
    Biosens Bioelectron; 2015 May; 67():694-9. PubMed ID: 25459058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extracellular potentials recording in intact olfactory epithelium by microelectrode array for a bioelectronic nose.
    Liu Q; Ye W; Xiao L; Du L; Hu N; Wang P
    Biosens Bioelectron; 2010 Jun; 25(10):2212-7. PubMed ID: 20356727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Odor Recognition with a Spiking Neural Network for Bioelectronic Nose.
    Li M; Ruan H; Qi Y; Guo T; Wang P; Pan G
    Sensors (Basel); 2019 Feb; 19(5):. PubMed ID: 30813574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo bioelectronic nose using transgenic mice for specific odor detection.
    Gao K; Li S; Zhuang L; Qin Z; Zhang B; Huang L; Wang P
    Biosens Bioelectron; 2018 Apr; 102():150-156. PubMed ID: 29128717
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odor discrimination using neural decoding of the main olfactory bulb in rats.
    You KJ; Ham HG; Lee HJ; Lang Y; Im C; Koh CS; Kim MY; Shin HC; Shin HC
    IEEE Trans Biomed Eng; 2011 May; 58(5):1208-15. PubMed ID: 21193366
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Zhu P; Liu S; Tian Y; Chen Y; Chen W; Wang P; Du L; Wu C
    ACS Chem Neurosci; 2022 Jun; 13(12):1727-1737. PubMed ID: 35642309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Olfactory cell-based biosensor: a first step towards a neurochip of bioelectronic nose.
    Liu Q; Cai H; Xu Y; Li Y; Li R; Wang P
    Biosens Bioelectron; 2006 Aug; 22(2):318-22. PubMed ID: 16567087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sensitive and robust chemical detection using an olfactory brain-computer interface.
    Shor E; Herrero-Vidal P; Dewan A; Uguz I; Curto VF; Malliaras GG; Savin C; Bozza T; Rinberg D
    Biosens Bioelectron; 2022 Jan; 195():113664. PubMed ID: 34624799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A wearable system for olfactory electrophysiological recording and animal motion control.
    Zhang B; Zhuang L; Qin Z; Wei X; Yuan Q; Qin C; Wang P
    J Neurosci Methods; 2018 Sep; 307():221-229. PubMed ID: 29859214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination among odorants by single neurons of the rat olfactory bulb.
    Wellis DP; Scott JW; Harrison TA
    J Neurophysiol; 1989 Jun; 61(6):1161-77. PubMed ID: 2746317
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Olfactory epithelium biosensor: odor discrimination of receptor neurons from a bio-hybrid sensing system.
    Liu Q; Hu N; Zhang F; Zhang D; Hsia KJ; Wang P
    Biomed Microdevices; 2012 Dec; 14(6):1055-61. PubMed ID: 23053447
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Olfactory bulb coding of odors, mixtures and sniffs is a linear sum of odor time profiles.
    Gupta P; Albeanu DF; Bhalla US
    Nat Neurosci; 2015 Feb; 18(2):272-81. PubMed ID: 25581362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An arterially perfused nose-olfactory bulb preparation of the rat.
    Pérez de los Cobos Pallarés F; Stanić D; Farmer D; Dutschmann M; Egger V
    J Neurophysiol; 2015 Sep; 114(3):2033-42. PubMed ID: 26108959
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fabrication of an olfactory receptor neuron chip based on planar multi-electrode array and its odor-response analysis.
    Ling S; Gao T; Liu J; Li Y; Zhou J; Li J; Zhou C; Tu C; Han F; Ye X
    Biosens Bioelectron; 2010 Nov; 26(3):1124-8. PubMed ID: 20863678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb.
    Nagayama S; Takahashi YK; Yoshihara Y; Mori K
    J Neurophysiol; 2004 Jun; 91(6):2532-40. PubMed ID: 14960563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectronic Nose: An Emerging Tool for Odor Standardization.
    Son M; Lee JY; Ko HJ; Park TH
    Trends Biotechnol; 2017 Apr; 35(4):301-307. PubMed ID: 28089199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Olfactory receptor cells respond to odors in a tissue and semiconductor hybrid neuron chip.
    Liu Q; Ye W; Hu N; Cai H; Yu H; Wang P
    Biosens Bioelectron; 2010 Dec; 26(4):1672-8. PubMed ID: 20943368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Odor response properties of neighboring mitral/tufted cells in the rat olfactory bulb.
    Egaña JI; Aylwin ML; Maldonado PE
    Neuroscience; 2005; 134(3):1069-80. PubMed ID: 15994017
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Zinc Nanoparticles-equipped Bioelectronic Nose Using a Microelectrode Array for Odorant Detection.
    Zhang Q; Zhang D; Li N; Lu Y; Yao Y; Li S; Liu Q
    Anal Sci; 2016; 32(4):387-93. PubMed ID: 27063709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.