These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 23774293)

  • 1. Ammonia recycling enables sustainable operation of bioelectrochemical systems.
    Cheng KY; Kaksonen AH; Cord-Ruwisch R
    Bioresour Technol; 2013 Sep; 143():25-31. PubMed ID: 23774293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding Ammonium Transport in Bioelectrochemical Systems towards its Recovery.
    Liu Y; Qin M; Luo S; He Z; Qiao R
    Sci Rep; 2016 Mar; 6():22547. PubMed ID: 26935791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ammonium as a sustainable proton shuttle in bioelectrochemical systems.
    Cord-Ruwisch R; Law Y; Cheng KY
    Bioresour Technol; 2011 Oct; 102(20):9691-6. PubMed ID: 21865037
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity.
    Fornero JJ; Rosenbaum M; Cotta MA; Angenent LT
    Environ Sci Technol; 2010 Apr; 44(7):2728-34. PubMed ID: 20178380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel methanogenic rotatable bioelectrochemical system operated with polarity inversion.
    Cheng KY; Ho G; Cord-Ruwisch R
    Environ Sci Technol; 2011 Jan; 45(2):796-802. PubMed ID: 21142093
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemically and bioelectrochemically induced ammonium recovery.
    Gildemyn S; Luther AK; Andersen SJ; Desloover J; Rabaey K
    J Vis Exp; 2015 Jan; (95):52405. PubMed ID: 25651406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Endogenous inorganic carbon buffers accumulation and self-buffering capacity enhancement of air-cathode microbial fuel cells through anolyte recycling.
    Chen J; Lv Y; Wang Y; Ren Y; Li X; Wang X
    Sci Total Environ; 2019 Aug; 676():11-17. PubMed ID: 31029896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Implication of diffusion and significance of anodic pH in nitrogen-recovering microbial electrochemical cells.
    Haddadi S; Elbeshbishy E; Lee HS
    Bioresour Technol; 2013 Aug; 142():562-9. PubMed ID: 23770996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ammonia/ammonium removal/recovery from wastewaters using bioelectrochemical systems (BES): A review.
    Lee YJ; Lin BL; Xue M; Tsunemi K
    Bioresour Technol; 2022 Nov; 363():127927. PubMed ID: 36096326
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectrochemical extraction of ammonium from low-strength wastewater with concomitant generation of high-purity hydrogen.
    Cheng KY; Kaksonen AH; Cord-Ruwisch R
    Environ Technol; 2022 Dec; ():1-12. PubMed ID: 36314060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recovery of silver from silver(I)-containing solutions in bioelectrochemical reactors.
    Tao HC; Gao ZY; Ding H; Xu N; Wu WM
    Bioresour Technol; 2012 May; 111():92-7. PubMed ID: 22382293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrochemically-assisted ammonia recovery from wastewater using a floating electrode.
    Muster TH; Jermakka J
    Water Sci Technol; 2017 Apr; 75(7-8):1804-1811. PubMed ID: 28452772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NH4+-NH3 removal from simulated wastewater using UV-TiO2 photocatalysis: effect of co-pollutants and pH.
    Vohra MS; Selimuzzaman SM; Al-Suwaiyan MS
    Environ Technol; 2010 May; 31(6):641-54. PubMed ID: 20540426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of a continuous flow microbial reverse-electrodialysis electrolysis cell using a non-buffered substrate and catholyte effluent addition.
    Hidayat S; Song YH; Park JY
    Bioresour Technol; 2017 Sep; 240():77-83. PubMed ID: 28314667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saline catholytes as alternatives to phosphate buffers in microbial fuel cells.
    Ahn Y; Logan BE
    Bioresour Technol; 2013 Mar; 132():436-9. PubMed ID: 23433978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioelectrochemical acidolysis of magnesia to induce struvite crystallization for recovering phosphorus from aqueous solution.
    Wang Z; Zhang J; Guan X; She L; Xiang P; Xia S; Zhang Z
    J Environ Sci (China); 2019 Nov; 85():119-128. PubMed ID: 31471018
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of pH buffer requirement in bioelectrochemical systems.
    Sleutels TH; Hamelers HV; Buisman CJ
    Environ Sci Technol; 2010 Nov; 44(21):8259-63. PubMed ID: 20942476
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of a continuous electrolytic system with discharging only one pH-controlled stream and its characteristics.
    Kim KW; Kim IT; Park GI; Lee EH
    Water Res; 2007 Jan; 41(2):303-14. PubMed ID: 17140620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocatalytic activity of anodic biofilm responses to pH changes in microbial fuel cells.
    Yuan Y; Zhao B; Zhou S; Zhong S; Zhuang L
    Bioresour Technol; 2011 Jul; 102(13):6887-91. PubMed ID: 21530241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An evaluation of a hybrid ion exchange electrodialysis process in the recovery of heavy metals from simulated dilute industrial wastewater.
    Mahmoud A; Hoadley AF
    Water Res; 2012 Jun; 46(10):3364-76. PubMed ID: 22503588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.