BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 23774294)

  • 1. Effect of NaCl on the heavy metal tolerance and bioaccumulation of Zygosaccharomyces rouxii and Saccharomyces cerevisiae.
    Li C; Xu Y; Jiang W; Dong X; Wang D; Liu B
    Bioresour Technol; 2013 Sep; 143():46-52. PubMed ID: 23774294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioaccumulation of cadmium by growing Zygosaccharomyces rouxii and Saccharomyces cerevisiae.
    Li C; Jiang W; Ma N; Zhu Y; Dong X; Wang D; Meng X; Xu Y
    Bioresour Technol; 2014 Mar; 155():116-21. PubMed ID: 24440489
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of inorganic salts on the growth and Cd2+ bioaccumulation of Zygosaccharomyces rouxii cultured under Cd2+ stress.
    Jiang W; Xu Y; Li C; Lv X; Wang D
    Bioresour Technol; 2013 Jan; 128():831-4. PubMed ID: 23182039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of salt-induced genes of Zygosaccharomyces rouxii by using Saccharomyces cerevisiae GeneFilters.
    Schoondermark-Stolk SA; ter Schure EG; Verrips CT; Verkleij AJ; Boonstra J
    FEMS Yeast Res; 2002 Dec; 2(4):525-32. PubMed ID: 12702268
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential hypersaline stress response in Zygosaccharomyces rouxii complex yeasts: a physiological and transcriptional study.
    Solieri L; Vezzani V; Cassanelli S; Dakal TC; Pazzini J; Giudici P
    FEMS Yeast Res; 2016 Sep; 16(6):. PubMed ID: 27493145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-expression of the Na(+)/H(+)-antiporter and H(+)-ATPase genes of the salt-tolerant yeast Zygosaccharomyces rouxii in Saccharomyces cerevisiae.
    Watanabe Y; Oshima N; Tamai Y
    FEMS Yeast Res; 2005 Feb; 5(4-5):411-7. PubMed ID: 15691746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different effects of sodium chloride preincubation on cadmium tolerance of Pichia kudriavzevii and Saccharomyces cerevisiae.
    Ma N; Li C; Dong X; Wang D; Xu Y
    J Basic Microbiol; 2015 Aug; 55(8):1002-12. PubMed ID: 25721585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a second gene (ZSOD22) of Na+/H+ antiporter from salt-tolerant yeast Zygosaccharomyces rouxii and functional expression of ZSOD2 and ZSOD22 in Saccharomyces cerevisiae.
    Iwaki T; Higashida Y; Tsuji H; Tamai Y; Watanabe Y
    Yeast; 1998 Sep; 14(13):1167-74. PubMed ID: 9791888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modulation of cadmium bioaccumulation and enhancing cadmium tolerance in Pichia kudriavzevii by sodium chloride preincubation.
    Ma N; Li C; Zhang D; Yu J; Xu Y
    J Basic Microbiol; 2016 Jul; 56(7):711-8. PubMed ID: 26753521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zygosaccharomyces rouxii Trk1 is an efficient potassium transporter providing yeast cells with high lithium tolerance.
    Zimmermannova O; Salazar A; Sychrova H; Ramos J
    FEMS Yeast Res; 2015 Jun; 15(4):fov029. PubMed ID: 26019147
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Selection of Zygosaccharomyces rouxii strains resistant to cadmium with improved removal abilities through ultraviolet-diethyl sulfate cooperative mutagenesis.
    Liu Y; Xu Y; Wang D; Jiang W
    Environ Sci Pollut Res Int; 2017 Aug; 24(22):18630-18639. PubMed ID: 28647878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii.
    Dakal TC; Solieri L; Giudici P
    Int J Food Microbiol; 2014 Aug; 185():140-57. PubMed ID: 24973621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differential analysis of ergosterol function in response to high salt and sugar stress in Zygosaccharomyces rouxii.
    Song N; Xia H; Yang Q; Zhang X; Yao L; Yang S; Chen X; Dai J
    FEMS Yeast Res; 2022 Sep; 22(1):. PubMed ID: 35932192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipidomic profiling of Saccharomyces cerevisiae and Zygosaccharomyces bailii reveals critical changes in lipid composition in response to acetic acid stress.
    Lindberg L; Santos AX; Riezman H; Olsson L; Bettiga M
    PLoS One; 2013; 8(9):e73936. PubMed ID: 24023914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative phenotypic analysis of multistress response in Zygosaccharomyces rouxii complex.
    Solieri L; Dakal TC; Bicciato S
    FEMS Yeast Res; 2014 Jun; 14(4):586-600. PubMed ID: 24533625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of nystatin on the release of glycerol from salt-stressed cells of the salt-tolerant yeast Zygosaccharomyces rouxii.
    Hosono K
    Arch Microbiol; 2000 Apr; 173(4):284-7. PubMed ID: 10816047
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potassium supply and homeostasis in the osmotolerant non-conventional yeasts Zygosaccharomyces rouxii differ from Saccharomyces cerevisiae.
    Stříbný J; Kinclová-Zimmermannová O; Sychrová H
    Curr Genet; 2012 Dec; 58(5-6):255-64. PubMed ID: 22948499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of salt-tolerance genes in Zygosaccharomyces rouxii.
    Hou L; Wang M; Wang C; Wang C; Wang H
    Appl Biochem Biotechnol; 2013 Jul; 170(6):1417-25. PubMed ID: 23673487
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of the salt-tolerant yeast Zygosaccharomyces rouxii in microtiter plates: effects of NaCl, pH and temperature on growth and fusel alcohol production from branched-chain amino acids.
    Jansen M; Veurink JH; Euverink GJ; Dijkhuizen L
    FEMS Yeast Res; 2003 May; 3(3):313-8. PubMed ID: 12689638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Osmoresistant yeast Zygosaccharomyces rouxii: the two most studied wild-type strains (ATCC 2623 and ATCC 42981) differ in osmotolerance and glycerol metabolism.
    Pribylova L; de Montigny J; Sychrova H
    Yeast; 2007 Mar; 24(3):171-80. PubMed ID: 17351908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.