These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 23774694)
1. The lipoprotein La7 contributes to Borrelia burgdorferi persistence in ticks and their transmission to naïve hosts. Yang X; Hegde S; Shroder DY; Smith AA; Promnares K; Neelakanta G; Anderson JF; Fikrig E; Pal U Microbes Infect; 2013; 15(10-11):729-37. PubMed ID: 23774694 [TBL] [Abstract][Full Text] [Related]
2. Borrelia burgdorferi small lipoprotein Lp6.6 is a member of multiple protein complexes in the outer membrane and facilitates pathogen transmission from ticks to mice. Promnares K; Kumar M; Shroder DY; Zhang X; Anderson JF; Pal U Mol Microbiol; 2009 Oct; 74(1):112-125. PubMed ID: 19703109 [TBL] [Abstract][Full Text] [Related]
3. Genetic variation at the vlsE locus of Borrelia burgdorferi within ticks and mice over the course of a single transmission cycle. Ohnishi J; Schneider B; Messer WB; Piesman J; de Silva AM J Bacteriol; 2003 Aug; 185(15):4432-41. PubMed ID: 12867452 [TBL] [Abstract][Full Text] [Related]
4. A surface enolase participates in Borrelia burgdorferi-plasminogen interaction and contributes to pathogen survival within feeding ticks. Nogueira SV; Smith AA; Qin JH; Pal U Infect Immun; 2012 Jan; 80(1):82-90. PubMed ID: 22025510 [TBL] [Abstract][Full Text] [Related]
5. Changes in temporal and spatial patterns of outer surface lipoprotein expression generate population heterogeneity and antigenic diversity in the Lyme disease spirochete, Borrelia burgdorferi. Hefty PS; Jolliff SE; Caimano MJ; Wikel SK; Akins DR Infect Immun; 2002 Jul; 70(7):3468-78. PubMed ID: 12065486 [TBL] [Abstract][Full Text] [Related]
6. Reductions in human Lyme disease risk due to the effects of oral vaccination on tick-to-mouse and mouse-to-tick transmission. Voordouw MJ; Tupper H; Önder Ö; Devevey G; Graves CJ; Kemps BD; Brisson D Vector Borne Zoonotic Dis; 2013 Apr; 13(4):203-14. PubMed ID: 23428088 [TBL] [Abstract][Full Text] [Related]
7. Regulatory protein BBD18 of the lyme disease spirochete: essential role during tick acquisition? Hayes BM; Dulebohn DP; Sarkar A; Tilly K; Bestor A; Ambroggio X; Rosa PA mBio; 2014 Apr; 5(2):e01017-14. PubMed ID: 24692636 [TBL] [Abstract][Full Text] [Related]
8. Borrelia burgdorferi surface protein Lmp1 facilitates pathogen dissemination through ticks as studied by an artificial membrane feeding system. Koci J; Bernard Q; Yang X; Pal U Sci Rep; 2018 Jan; 8(1):1910. PubMed ID: 29382879 [TBL] [Abstract][Full Text] [Related]
9. Two Distinct Mechanisms Govern RpoS-Mediated Repression of Tick-Phase Genes during Mammalian Host Adaptation by Grove AP; Liveris D; Iyer R; Petzke M; Rudman J; Caimano MJ; Radolf JD; Schwartz I mBio; 2017 Aug; 8(4):. PubMed ID: 28830947 [TBL] [Abstract][Full Text] [Related]
10. Activation of the RpoN-RpoS regulatory pathway during the enzootic life cycle of Borrelia burgdorferi. Ouyang Z; Narasimhan S; Neelakanta G; Kumar M; Pal U; Fikrig E; Norgard MV BMC Microbiol; 2012 Mar; 12():44. PubMed ID: 22443136 [TBL] [Abstract][Full Text] [Related]
11. Role of the surface lipoprotein BBA07 in the enzootic cycle of Borrelia burgdorferi. Xu H; He M; He JJ; Yang XF Infect Immun; 2010 Jul; 78(7):2910-8. PubMed ID: 20421380 [TBL] [Abstract][Full Text] [Related]
12. bptA (bbe16) is essential for the persistence of the Lyme disease spirochete, Borrelia burgdorferi, in its natural tick vector. Revel AT; Blevins JS; Almazán C; Neil L; Kocan KM; de la Fuente J; Hagman KE; Norgard MV Proc Natl Acad Sci U S A; 2005 May; 102(19):6972-7. PubMed ID: 15860579 [TBL] [Abstract][Full Text] [Related]
13. pncA and bptA are not sufficient to complement Ixodes scapularis colonization and persistence by Borrelia burgdorferi in a linear plasmid lp25-deficient background. Gilmore RD; Brandt KS; Hyde JA Infect Immun; 2014 Dec; 82(12):5110-6. PubMed ID: 25245809 [TBL] [Abstract][Full Text] [Related]
14. Infection history of the blood-meal host dictates pathogenic potential of the Lyme disease spirochete within the feeding tick vector. Bhatia B; Hillman C; Carracoi V; Cheff BN; Tilly K; Rosa PA PLoS Pathog; 2018 Apr; 14(4):e1006959. PubMed ID: 29621350 [TBL] [Abstract][Full Text] [Related]
15. Borrelia burgdorferi OspC protein required exclusively in a crucial early stage of mammalian infection. Tilly K; Krum JG; Bestor A; Jewett MW; Grimm D; Bueschel D; Byram R; Dorward D; Vanraden MJ; Stewart P; Rosa P Infect Immun; 2006 Jun; 74(6):3554-64. PubMed ID: 16714588 [TBL] [Abstract][Full Text] [Related]
16. Influence of arthritis-related protein (BBF01) on infectivity of Borrelia burgdorferi B31. Imai D; Holden K; Velazquez EM; Feng S; Hodzic E; Barthold SW BMC Microbiol; 2013 May; 13():100. PubMed ID: 23651628 [TBL] [Abstract][Full Text] [Related]
17. Assessment of decorin-binding protein A to the infectivity of Borrelia burgdorferi in the murine models of needle and tick infection. Blevins JS; Hagman KE; Norgard MV BMC Microbiol; 2008 May; 8():82. PubMed ID: 18507835 [TBL] [Abstract][Full Text] [Related]
18. Antigenic and genetic heterogeneity of Borrelia burgdorferi populations transmitted by ticks. Ohnishi J; Piesman J; de Silva AM Proc Natl Acad Sci U S A; 2001 Jan; 98(2):670-5. PubMed ID: 11209063 [TBL] [Abstract][Full Text] [Related]
19. Outer surface protein A protects Lyme disease spirochetes from acquired host immunity in the tick vector. Battisti JM; Bono JL; Rosa PA; Schrumpf ME; Schwan TG; Policastro PF Infect Immun; 2008 Nov; 76(11):5228-37. PubMed ID: 18779341 [TBL] [Abstract][Full Text] [Related]
20. Cross-reactive acquired immunity influences transmission success of the Lyme disease pathogen, Borrelia afzelii. Jacquet M; Durand J; Rais O; Voordouw MJ Infect Genet Evol; 2015 Dec; 36():131-140. PubMed ID: 26384476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]