BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23774780)

  • 1. Influence of temperature and regeneration cycles on Hg capture and efficiency by structured Au/C regenerable sorbents.
    Ballestero D; Gómez-Giménez C; García-Díez E; Juan R; Rubio B; Izquierdo MT
    J Hazard Mater; 2013 Sep; 260():247-54. PubMed ID: 23774780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tail-end Hg capture on Au/carbon-monolith regenerable sorbents.
    Izquierdo MT; Ballestero D; Juan R; García-Díez E; Rubio B; Ruiz C; Pino MR
    J Hazard Mater; 2011 Oct; 193():304-10. PubMed ID: 21855215
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regenerable sorbents for mercury capture in simulated coal combustion flue gas.
    Rodríguez-Pérez J; López-Antón MA; Díaz-Somoano M; García R; Martínez-Tarazona MR
    J Hazard Mater; 2013 Sep; 260():869-77. PubMed ID: 23876255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery.
    Xie J; Qu Z; Yan N; Yang S; Chen W; Hu L; Huang W; Liu P
    J Hazard Mater; 2013 Oct; 261():206-13. PubMed ID: 23933289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pd/activated carbon sorbents for mid-temperature capture of mercury from coal-derived fuel gas.
    Li D; Han J; Han L; Wang J; Chang L
    J Environ Sci (China); 2014 Jul; 26(7):1497-504. PubMed ID: 25079999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mercury removal from MSW incineration flue gas by mineral-based sorbents.
    Rumayor M; Svoboda K; Švehla J; Pohořelý M; Šyc M
    Waste Manag; 2018 Mar; 73():265-270. PubMed ID: 29248369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noble metal-based sorbents: A way to avoid new waste after mercury removal.
    Antuña-Nieto C; Rodríguez E; Lopez-Anton MA; García R; Martínez-Tarazona MR
    J Hazard Mater; 2020 Dec; 400():123168. PubMed ID: 32563907
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of gold- and chlorine-impregnated bead-type activated carbon for a mercury sorbent trap.
    Song YC; Lee TG
    Chemosphere; 2016 Dec; 165():470-477. PubMed ID: 27684592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel regenerable sorbent for mercury capture from flue gases of coal-fired power plant.
    Liu Y; Kelly DJ; Yang H; Lin CC; Kuznicki SM; Xu Z
    Environ Sci Technol; 2008 Aug; 42(16):6205-10. PubMed ID: 18767688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CeO2-TiO2 sorbents for the removal of elemental mercury from syngas.
    Zhou J; Hou W; Qi P; Gao X; Luo Z; Cen K
    Environ Sci Technol; 2013 Sep; 47(17):10056-62. PubMed ID: 23931010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silica-Silver Nanocomposites as Regenerable Sorbents for Hg
    Cao T; Li Z; Xiong Y; Yang Y; Xu S; Bisson T; Gupta R; Xu Z
    Environ Sci Technol; 2017 Oct; 51(20):11909-11917. PubMed ID: 28823171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The application of regenerable sorbents for mercury capture in gas phase.
    Lopez-Anton MA; Fernández-Miranda N; Martínez-Tarazona MR
    Environ Sci Pollut Res Int; 2016 Dec; 23(24):24495-24503. PubMed ID: 27604126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural effect of the in situ generated titania on its ability to oxidize and capture the gas-phase elemental mercury.
    Lee TG; Hyun JE
    Chemosphere; 2006 Jan; 62(1):26-33. PubMed ID: 15949836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gas sensing with Au-decorated carbon nanotubes.
    Zanolli Z; Leghrib R; Felten A; Pireaux JJ; Llobet E; Charlier JC
    ACS Nano; 2011 Jun; 5(6):4592-9. PubMed ID: 21553864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cost-Effective Manganese Ore Sorbent for Elemental Mercury Removal from Flue Gas.
    Yang Y; Miao S; Liu J; Wang Z; Yu Y
    Environ Sci Technol; 2019 Aug; 53(16):9957-9965. PubMed ID: 31369246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bench-scale studies of in-duct mercury capture using cupric chloride-impregnated carbons.
    Lee SS; Lee JY; Keener TC
    Environ Sci Technol; 2009 Apr; 43(8):2957-62. PubMed ID: 19475977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mercury removal from flue gases by novel regenerable magnetic nanocomposite sorbents.
    Dong J; Xu Z; Kuznicki SM
    Environ Sci Technol; 2009 May; 43(9):3266-71. PubMed ID: 19534145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (18)O(2) label mechanism of sulfur generation and characterization in properties over mesoporous Sm-based sorbents for hot coal gas desulfurization.
    Liu BS; Wan ZY; Wang F; Zhan YP; Tian M; Cheung AS
    J Hazard Mater; 2014 Feb; 267():229-37. PubMed ID: 24462892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 1. In-duct removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4367-72. PubMed ID: 11718359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of mercury capture by sorbent injection using a simplified model.
    Zhao B; Zhang Z; Jin J; Pan WP
    J Hazard Mater; 2009 Oct; 170(2-3):1179-85. PubMed ID: 19541417
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.