These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 23774780)

  • 21. Estimates of increased black carbon emissions from electrostatic precipitators during powdered activated carbon injection for mercury emissions control.
    Clack HL
    Environ Sci Technol; 2012 Jul; 46(13):7327-33. PubMed ID: 22663136
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of a sorbent trap system to gas-phase elemental and oxidized mercury analysis.
    Zhang Z; Eom Y; Lee MJ; Lee TG
    Chemosphere; 2016 Jul; 154():293-299. PubMed ID: 27060637
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of bamboo-derived sorbents for mercury removal in gas phase.
    Siddiqui N; Don J; Mondal K; Mahajan A
    Environ Technol; 2011; 32(3-4):383-94. PubMed ID: 21780706
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Creating gold nanoprisms directly on quartz crystal microbalance electrodes for mercury vapor sensing.
    Sabri YM; Ippolito SJ; O'Mullane AP; Tardio J; Bansal V; Bhargava SK
    Nanotechnology; 2011 Jul; 22(30):305501. PubMed ID: 21719970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Catalytic regeneration of mercury sorbents.
    Bentley M; Fan M; Dutcher B; Tang M; Argyle MD; Russell AG; Zhang Y; Sharma MP; Swapp SM
    J Hazard Mater; 2013 Nov; 262():642-8. PubMed ID: 24121636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An X-ray photoelectron spectroscopy study of surface changes on brominated and sulfur-treated activated carbon sorbents during mercury capture: performance of pellet versus fiber sorbents.
    Saha A; Abram DN; Kuhl KP; Paradis J; Crawford JL; Sasmaz E; Chang R; Jaramillo TF; Wilcox J
    Environ Sci Technol; 2013 Dec; 47(23):13695-701. PubMed ID: 24256554
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of sintering-resistant sorbents for CO2 capture.
    Liu W; Feng B; Wu Y; Wang G; Barry J; da Costa JC
    Environ Sci Technol; 2010 Apr; 44(8):3093-7. PubMed ID: 20205453
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EXAFS and XRD characterization of palladium sorbents for high temperature mercury capture from fuel gas.
    Poulston S; Hyde TI; Hamilton H; Mathon O; Prestipino C; Sankar G; Smith AW
    Phys Chem Chem Phys; 2010 Jan; 12(2):484-91. PubMed ID: 20023826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Feasibility of CO₂/SO₂ uptake enhancement of calcined limestone modified with rice husk ash during pressurized carbonation.
    Chen H; Zhao C; Ren Q
    J Environ Manage; 2012 Jan; 93(1):235-44. PubMed ID: 22054590
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of impregnation sequence of Pd/Ce/γ-Al
    Huo Q; Yue C; Wang Y; Han L; Wang J; Chen S; Bao W; Chang L; Xie K
    Chemosphere; 2020 Jun; 249():126164. PubMed ID: 32065997
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stripping voltammetric detection of mercury(II) based on a bimetallic Au-Pt inorganic-organic hybrid nanocomposite modified glassy carbon electrode.
    Gong J; Zhou T; Song D; Zhang L; Hu X
    Anal Chem; 2010 Jan; 82(2):567-73. PubMed ID: 20014816
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of mercury binding onto a novel brominated biomass ash sorbent by X-ray absorption spectroscopy.
    Bisson TM; MacLean LC; Hu Y; Xu Z
    Environ Sci Technol; 2012 Nov; 46(21):12186-93. PubMed ID: 23020596
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window.
    Xie J; Xu H; Qu Z; Huang W; Chen W; Ma Y; Zhao S; Liu P; Yan N
    J Colloid Interface Sci; 2014 Aug; 428():121-7. PubMed ID: 24910043
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fabrication of CaO-based sorbents for CO₂ capture by a mixing method.
    Qin C; Liu W; An H; Yin J; Feng B
    Environ Sci Technol; 2012 Feb; 46(3):1932-9. PubMed ID: 22216962
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Potential hazards of brominated carbon sorbents for mercury emission control.
    Bisson TM; Xu Z
    Environ Sci Technol; 2015 Feb; 49(4):2496-502. PubMed ID: 25594726
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly sensitive electrochemical sensor for mercury(II) ions by using a mercury-specific oligonucleotide probe and gold nanoparticle-based amplification.
    Zhu Z; Su Y; Li J; Li D; Zhang J; Song S; Zhao Y; Li G; Fan C
    Anal Chem; 2009 Sep; 81(18):7660-6. PubMed ID: 19691296
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of the operation conditions on CO2 capture by CaO-derived sorbents prepared from synthetic CaCO3.
    Nieto-Sanchez AJ; Olivares-Marin M; Garcia S; Pevida C; Cuerda-Correa EM
    Chemosphere; 2013 Nov; 93(9):2148-58. PubMed ID: 24035693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simulation of mercury capture by activated carbon injection in incinerator flue gas. 2. Fabric filter removal.
    Scala F
    Environ Sci Technol; 2001 Nov; 35(21):4373-8. PubMed ID: 11718360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Low Concentration Mercury Sorption Mechanisms and Control by Calcium-Based Sorbents: Application in Coal-Fired Processes.
    Ghorishi SB; Sedman CB
    J Air Waste Manag Assoc; 1998 Dec; 48(12):1191-1198. PubMed ID: 28060620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced capture of elemental mercury by bamboo-based sorbents.
    Tan Z; Xiang J; Su S; Zeng H; Zhou C; Sun L; Hu S; Qiu J
    J Hazard Mater; 2012 Nov; 239-240():160-6. PubMed ID: 22995206
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.