BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23775282)

  • 1. Effect of strain rate on the material properties of human liver parenchyma in unconfined compression.
    Kemper AR; Santago AC; Stitzel JD; Sparks JL; Duma SM
    J Biomech Eng; 2013 Oct; 135(10):104503-8. PubMed ID: 23775282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the biomechanical and injury response of human liver parenchyma under tensile loading.
    Untaroiu CD; Lu YC; Siripurapu SK; Kemper AR
    J Mech Behav Biomed Mater; 2015 Jan; 41():280-91. PubMed ID: 25092147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Material characterization of liver parenchyma using specimen-specific finite element models.
    Untaroiu CD; Lu YC
    J Mech Behav Biomed Mater; 2013 Oct; 26():11-22. PubMed ID: 23800843
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanical response of human spleen in tensile loading.
    Kemper AR; Santago AC; Stitzel JD; Sparks JL; Duma SM
    J Biomech; 2012 Jan; 45(2):348-55. PubMed ID: 22078273
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of storage on tensile material properties of bovine liver.
    Lu YC; Kemper AR; Untaroiu CD
    J Mech Behav Biomed Mater; 2014 Jan; 29():339-49. PubMed ID: 24148876
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of postmortem time and storage fluid on the material properties of bovine liver parenchyma in tension.
    Dunford KM; LeRoith T; Kemper AR
    J Mech Behav Biomed Mater; 2018 Nov; 87():240-255. PubMed ID: 30096512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanical response of human liver in tensile loading.
    Kemper AR; Santago AC; Stitzel JD; Sparks JL; Duma SM
    Ann Adv Automot Med; 2010; 54():15-26. PubMed ID: 21050588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human liver finite element model validation using compressive and tensile experimental data - biomed 2013.
    Davis ML; Moreno DP; Vavalle NA; Gayzik FS
    Biomed Sci Instrum; 2013; 49():289-96. PubMed ID: 23686212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical characterization of brain tissue in compression at dynamic strain rates.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Jun; 10():23-38. PubMed ID: 22520416
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The estimation method of friction in unconfined compression tests of liver tissue.
    Yang J; Yu L; Wang L; Wang W; Cui J
    Proc Inst Mech Eng H; 2018 Jun; 232(6):573-587. PubMed ID: 29749802
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of structural and material clavicle response corridors under axial compression and three point bending loading for clavicle finite element model validation.
    Zhang Q; Kindig M; Li Z; Crandall JR; Kerrigan JR
    J Biomech; 2014 Aug; 47(11):2563-70. PubMed ID: 24975696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rate dependent biomechanical properties of corneal stroma in unconfined compression.
    Hatami-Marbini H; Etebu E
    Biorheology; 2013; 50(3-4):133-47. PubMed ID: 23863279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Passive skeletal muscle response to impact loading: experimental testing and inverse modelling.
    Takaza M; Moerman KM; Simms CK
    J Mech Behav Biomed Mater; 2013 Nov; 27():214-25. PubMed ID: 23707599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantifying dynamic mechanical properties of human placenta tissue using optimization techniques with specimen-specific finite-element models.
    Hu J; Klinich KD; Miller CS; Nazmi G; Pearlman MD; Schneider LW; Rupp JD
    J Biomech; 2009 Nov; 42(15):2528-34. PubMed ID: 19665131
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive modeling of rate-dependent stress-strain behavior of human liver in blunt impact loading.
    Sparks JL; Dupaix RB
    Ann Biomed Eng; 2008 Nov; 36(11):1883-92. PubMed ID: 18751900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of friction coefficient in unconfined compression of brain tissue.
    Rashid B; Destrade M; Gilchrist MD
    J Mech Behav Biomed Mater; 2012 Oct; 14():163-71. PubMed ID: 23026694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of strain rate on the tensile material properties of human placenta.
    Manoogian SJ; Bisplinghoff JA; McNally C; Kemper AR; Santago AC; Duma SM
    J Biomech Eng; 2009 Sep; 131(9):091008. PubMed ID: 19725697
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the nonlinear behaviour and the failure of human liver capsule through inflation tests.
    Brunon A; Bruyère-Garnier K; Coret M
    J Mech Behav Biomed Mater; 2011 Nov; 4(8):1572-81. PubMed ID: 22098859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive moduli of the human medial meniscus in the axial and radial directions at equilibrium and at a physiological strain rate.
    Chia HN; Hull ML
    J Orthop Res; 2008 Jul; 26(7):951-6. PubMed ID: 18271010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stress-relaxation response of human menisci under confined compression conditions.
    Martin Seitz A; Galbusera F; Krais C; Ignatius A; Dürselen L
    J Mech Behav Biomed Mater; 2013 Oct; 26():68-80. PubMed ID: 23811278
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.