These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 23775282)

  • 21. Characterisation of human diaphragm at high strain rate loading.
    Gaur P; Chawla A; Verma K; Mukherjee S; Lalvani S; Malhotra R; Mayer C
    J Mech Behav Biomed Mater; 2016 Jul; 60():603-616. PubMed ID: 27062242
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Coupled experiment/finite element analysis on the mechanical response of porcine brain under high strain rates.
    Prabhu R; Horstemeyer MF; Tucker MT; Marin EB; Bouvard JL; Sherburn JA; Liao J; Williams LN
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):1067-80. PubMed ID: 21783116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing behind armor blunt trauma in accordance with the National Institute of Justice Standard for Personal Body Armor Protection using finite element modeling.
    Roberts JC; Ward EE; Merkle AC; O'Connor JV
    J Trauma; 2007 May; 62(5):1127-33. PubMed ID: 17495712
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments.
    Roan E; Vemaganti K
    J Biomech Eng; 2007 Jun; 129(3):450-6. PubMed ID: 17536913
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional finite element analysis of the shear bond test.
    DeHoff PH; Anusavice KJ; Wang Z
    Dent Mater; 1995 Mar; 11(2):126-31. PubMed ID: 8621033
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Experimental mechanical characterization of abdominal organs: liver, kidney & spleen.
    Umale S; Deck C; Bourdet N; Dhumane P; Soler L; Marescaux J; Willinger R
    J Mech Behav Biomed Mater; 2013 Jan; 17():22-33. PubMed ID: 23127642
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Freezing affects the mechanical properties of bovine liver - biomed 2009.
    Santago AC; Kemper AR; McNally C; Sparks JL; Duma SM
    Biomed Sci Instrum; 2009; 45():24-9. PubMed ID: 19369734
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Shear mechanical properties of human lumbar annulus fibrosus.
    Iatridis JC; Kumar S; Foster RJ; Weidenbaum M; Mow VC
    J Orthop Res; 1999 Sep; 17(5):732-7. PubMed ID: 10569484
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A coupled approach for identification of nonlinear and compressible material models for soft tissue based on different experimental setups - Exemplified and detailed for lung parenchyma.
    Birzle AM; Martin C; Uhlig S; Wall WA
    J Mech Behav Biomed Mater; 2019 Jun; 94():126-143. PubMed ID: 30884281
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs.
    Papini M; Zdero R; Schemitsch EH; Zalzal P
    J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomechanical properties of abdominal organs in vivo and postmortem under compression loads.
    Rosen J; Brown JD; De S; Sinanan M; Hannaford B
    J Biomech Eng; 2008 Apr; 130(2):021020. PubMed ID: 18412507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The differences in measured prostate material properties between probing and unconfined compression testing methods.
    Johnson B; Campbell S; Campbell-Kyureghyan N
    Med Eng Phys; 2020 Jun; 80():44-51. PubMed ID: 32381284
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Inertia effects on characterization of dynamic response of brain tissue.
    Sanborn B; Nie X; Chen W; Weerasooriya T
    J Biomech; 2012 Feb; 45(3):434-9. PubMed ID: 22226509
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A nonlinear viscoelastic finite element model of polyethylene.
    Chen PC; Colwell CW; D'Lima DD
    Mol Cell Biomech; 2011 Jun; 8(2):135-48. PubMed ID: 21608414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Compressive properties and constitutive modeling of different regions of 8-week-old pediatric porcine brain under large strain and wide strain rates.
    Li Z; Yang H; Wang G; Han X; Zhang S
    J Mech Behav Biomed Mater; 2019 Jan; 89():122-131. PubMed ID: 30268868
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests.
    Wu JZ; Cutlip RG; Andrew ME; Dong RG
    Skin Res Technol; 2007 Feb; 13(1):34-42. PubMed ID: 17250530
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Constitutive behavior of ocular tissues over a range of strain rates.
    Kim W; Argento A; Rozsa FW; Mallett K
    J Biomech Eng; 2012 Jun; 134(6):061002. PubMed ID: 22757499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic compressive response of bovine liver tissues.
    Pervin F; Chen WW; Weerasooriya T
    J Mech Behav Biomed Mater; 2011 Jan; 4(1):76-84. PubMed ID: 21094481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.