These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
573 related articles for article (PubMed ID: 23775295)
1. Automated disposable small scale reactor for high throughput bioprocess development: a proof of concept study. Bareither R; Bargh N; Oakeshott R; Watts K; Pollard D Biotechnol Bioeng; 2013 Dec; 110(12):3126-38. PubMed ID: 23775295 [TBL] [Abstract][Full Text] [Related]
2. Disposable bioreactors: the current state-of-the-art and recommended applications in biotechnology. Eibl R; Kaiser S; Lombriser R; Eibl D Appl Microbiol Biotechnol; 2010 Mar; 86(1):41-9. PubMed ID: 20094714 [TBL] [Abstract][Full Text] [Related]
3. High throughput screening of particle conditioning operations: I. System design and method development. Noyes A; Huffman B; Godavarti R; Titchener-Hooker N; Coffman J; Sunasara K; Mukhopadhyay T Biotechnol Bioeng; 2015 Aug; 112(8):1554-67. PubMed ID: 25728932 [TBL] [Abstract][Full Text] [Related]
4. Use of orbital shaken disposable bioreactors for mammalian cell cultures from the milliliter-scale to the 1,000-liter scale. Zhang X; Stettler M; De Sanctis D; Perrone M; Parolini N; Discacciati M; De Jesus M; Hacker D; Quarteroni A; Wurm F Adv Biochem Eng Biotechnol; 2009; 115():33-53. PubMed ID: 19499209 [TBL] [Abstract][Full Text] [Related]
5. Milliliter-scale stirred tank reactors for the cultivation of microorganisms. Hortsch R; Weuster-Botz D Adv Appl Microbiol; 2010; 73():61-82. PubMed ID: 20800759 [TBL] [Abstract][Full Text] [Related]
6. A predictive high-throughput scale-down model of monoclonal antibody production in CHO cells. Legmann R; Schreyer HB; Combs RG; McCormick EL; Russo AP; Rodgers ST Biotechnol Bioeng; 2009 Dec; 104(6):1107-20. PubMed ID: 19623562 [TBL] [Abstract][Full Text] [Related]
7. Conversion of a CHO cell culture process from perfusion to fed-batch technology without altering product quality. Meuwly F; Weber U; Ziegler T; Gervais A; Mastrangeli R; Crisci C; Rossi M; Bernard A; von Stockar U; Kadouri A J Biotechnol; 2006 May; 123(1):106-16. PubMed ID: 16324762 [TBL] [Abstract][Full Text] [Related]
8. Development, parallelization, and automation of a gas-inducing milliliter-scale bioreactor for high-throughput bioprocess design (HTBD). Puskeiler R; Kaufmann K; Weuster-Botz D Biotechnol Bioeng; 2005 Mar; 89(5):512-23. PubMed ID: 15669089 [TBL] [Abstract][Full Text] [Related]
10. Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Puskeiler R; Kusterer A; John GT; Weuster-Botz D Biotechnol Appl Biochem; 2005 Dec; 42(Pt 3):227-35. PubMed ID: 15853771 [TBL] [Abstract][Full Text] [Related]
11. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns. Seth G; Hamilton RW; Stapp TR; Zheng L; Meier A; Petty K; Leung S; Chary S Biotechnol Bioeng; 2013 May; 110(5):1376-85. PubMed ID: 23242970 [TBL] [Abstract][Full Text] [Related]
12. Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures. Amanullah A; Otero JM; Mikola M; Hsu A; Zhang J; Aunins J; Schreyer HB; Hope JA; Russo AP Biotechnol Bioeng; 2010 May; 106(1):57-67. PubMed ID: 20073088 [TBL] [Abstract][Full Text] [Related]
13. Characterization of TAP Ambr 250 disposable bioreactors, as a reliable scale-down model for biologics process development. Xu P; Clark C; Ryder T; Sparks C; Zhou J; Wang M; Russell R; Scott C Biotechnol Prog; 2017 Mar; 33(2):478-489. PubMed ID: 27977912 [TBL] [Abstract][Full Text] [Related]
14. Disposable bioreactors: maturation into pharmaceutical glycoprotein manufacturing. Brecht R Adv Biochem Eng Biotechnol; 2009; 115():1-31. PubMed ID: 19517075 [TBL] [Abstract][Full Text] [Related]
15. A review of advanced small-scale parallel bioreactor technology for accelerated process development: current state and future need. Bareither R; Pollard D Biotechnol Prog; 2011; 27(1):2-14. PubMed ID: 21312350 [TBL] [Abstract][Full Text] [Related]
16. Use of disposable reactors to generate inoculum cultures for E. coli production fermentations. Mahajan E; Matthews T; Hamilton R; Laird MW Biotechnol Prog; 2010; 26(4):1200-3. PubMed ID: 20730774 [TBL] [Abstract][Full Text] [Related]
17. High-throughput miniaturized bioreactors for cell culture process development: reproducibility, scalability, and control. Rameez S; Mostafa SS; Miller C; Shukla AA Biotechnol Prog; 2014; 30(3):718-27. PubMed ID: 24449637 [TBL] [Abstract][Full Text] [Related]
18. High throughput automated microbial bioreactor system used for clone selection and rapid scale-down process optimization. Velez-Suberbie ML; Betts JPJ; Walker KL; Robinson C; Zoro B; Keshavarz-Moore E Biotechnol Prog; 2018 Jan; 34(1):58-68. PubMed ID: 28748655 [TBL] [Abstract][Full Text] [Related]
19. Characterization and feasibility of a miniaturized stirred tank bioreactor to perform E. coli high cell density fed-batch fermentations. Ali S; Perez-Pardo MA; Aucamp JP; Craig A; Bracewell DG; Baganz F Biotechnol Prog; 2012; 28(1):66-75. PubMed ID: 21954170 [TBL] [Abstract][Full Text] [Related]
20. Bioreactor systems for the production of biopharmaceuticals from animal cells. Warnock JN; Al-Rubeai M Biotechnol Appl Biochem; 2006 Jul; 45(Pt 1):1-12. PubMed ID: 16764553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]