These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 23775333)

  • 1. Compressive follower load influences cervical spine kinematics and kinetics during simulated head-first impact in an in vitro model.
    Saari A; Dennison CR; Zhu Q; Nelson TS; Morley P; Oxland TR; Cripton PA; Itshayek E
    J Biomech Eng; 2013 Nov; 135(11):111003. PubMed ID: 23775333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Head-first impact with head protrusion causes noncontiguous injuries of the cadaveric cervical spine.
    Ivancic PC
    Clin J Sport Med; 2012 Sep; 22(5):390-6. PubMed ID: 22929043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of varying compressive loading methods on physiologic motion patterns in the cervical spine.
    Bell KM; Yan Y; Debski RE; Sowa GA; Kang JD; Tashman S
    J Biomech; 2016 Jan; 49(2):167-72. PubMed ID: 26708967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetics of the head-neck complex in low-speed rear impact.
    Stemper BD; Yoganandan N; Pintar FA
    Biomed Sci Instrum; 2003; 39():245-50. PubMed ID: 12724902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of compressive follower preload on the flexion-extension response of the human lumbar spine.
    Patwardhan AG; Havey RM; Carandang G; Simonds J; Voronov LI; Ghanayem AJ; Meade KP; Gavin TM; Paxinos O
    J Orthop Res; 2003 May; 21(3):540-6. PubMed ID: 12706029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous motion analysis of the head-neck complex under impact.
    Yoganandan N; Pintar FA; Arnold P; Reinartz J; Cusick JF; Maiman DJ; Sances A
    J Spinal Disord; 1994 Oct; 7(5):420-8. PubMed ID: 7819642
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiplanar cervical spine injury due to head-turned rear impact.
    Panjabi MM; Ivancic PC; Maak TG; Tominaga Y; Rubin W
    Spine (Phila Pa 1976); 2006 Feb; 31(4):420-9. PubMed ID: 16481952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atlas injury mechanisms during head-first impact.
    Ivancic PC
    Spine (Phila Pa 1976); 2012 May; 37(12):1022-9. PubMed ID: 22089395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of age and injury mechanism on cervical spine injury tolerance from head contact loading.
    Yoganandan N; Chirvi S; Voo L; Pintar FA; Banerjee A
    Traffic Inj Prev; 2018 Feb; 19(2):165-172. PubMed ID: 28738168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Importance of muscle activations for biofidelic pediatric neck response in computational models.
    Dibb AT; Cox CA; Nightingale RW; Luck JF; Cutcliffe HC; Myers BS; Arbogast KB; Seacrist T; Bass CR
    Traffic Inj Prev; 2013; 14 Suppl():S116-27. PubMed ID: 23905513
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward a more robust lower neck compressive injury tolerance-an approach combining multiple test methodologies.
    Toomey DE; Yang KH; Yoganandan N; Pintar FA; Van Ee CA
    Traffic Inj Prev; 2013; 14(8):845-52. PubMed ID: 24073773
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Load-carrying capacity of the human cervical spine in compression is increased under a follower load.
    Patwardhan AG; Havey RM; Ghanayem AJ; Diener H; Meade KP; Dunlap B; Hodges SD
    Spine (Phila Pa 1976); 2000 Jun; 25(12):1548-54. PubMed ID: 10851105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine.
    Renner SM; Natarajan RN; Patwardhan AG; Havey RM; Voronov LI; Guo BY; Andersson GB; An HS
    J Biomech; 2007; 40(6):1326-32. PubMed ID: 16843473
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Do cervical collars and cervicothoracic orthoses effectively stabilize the injured cervical spine? A biomechanical investigation.
    Ivancic PC
    Spine (Phila Pa 1976); 2013 Jun; 38(13):E767-74. PubMed ID: 23486409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facet joint and disc kinematics during simulated rear crashes with active injury prevention systems.
    Ivancic PC
    Spine (Phila Pa 1976); 2011 Aug; 36(18):E1215-24. PubMed ID: 21343848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The relationship between lower neck shear force and facet joint kinematics during automotive rear impacts.
    Stemper BD; Yoganandan N; Pintar FA; Maiman DJ
    Clin Anat; 2011 Apr; 24(3):319-26. PubMed ID: 21433081
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetics of the cervical spine in pediatric and adult volunteers during low speed frontal impacts.
    Seacrist T; Arbogast KB; Maltese MR; García-Espaňa JF; Lopez-Valdes FJ; Kent RW; Tanji H; Higuchi K; Balasubramanian S
    J Biomech; 2012 Jan; 45(1):99-106. PubMed ID: 22056197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental biomechanics of the cervical spine: Tension and compression.
    Nuckley DJ; Ching RP
    J Biomech; 2006; 39(16):3045-54. PubMed ID: 16321394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A numerical investigation of factors affecting cervical spine injuries during rollover crashes.
    Hu J; Yang KH; Chou CC; King AI
    Spine (Phila Pa 1976); 2008 Nov; 33(23):2529-35. PubMed ID: 18978594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a system for in vitro neck muscle force replication in whole cervical spine experiments.
    Panjabi MM; Miura T; Cripton PA; Wang JL; Nain AS; DuBois C
    Spine (Phila Pa 1976); 2001 Oct; 26(20):2214-9. PubMed ID: 11598511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.