These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

417 related articles for article (PubMed ID: 23775585)

  • 1. Carbon dioxide emissions through oxidative peat decomposition on a burnt tropical peatland.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2014 Feb; 20(2):555-65. PubMed ID: 23775585
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evapotranspiration of tropical peat swamp forests.
    Hirano T; Kusin K; Limin S; Osaki M
    Glob Chang Biol; 2015 May; 21(5):1914-27. PubMed ID: 24912043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The amount of carbon released from peat and forest fires in Indonesia during 1997.
    Page SE; Siegert F; Rieley JO; Boehm HD; Jaya A; Limin S
    Nature; 2002 Nov; 420(6911):61-5. PubMed ID: 12422213
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ecosystem-scale methane flux in tropical peat swamp forest in Indonesia.
    Sakabe A; Itoh M; Hirano T; Kusin K
    Glob Chang Biol; 2018 Nov; 24(11):5123-5136. PubMed ID: 30175421
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors affecting oxidative peat decomposition due to land use in tropical peat swamp forests in Indonesia.
    Itoh M; Okimoto Y; Hirano T; Kusin K
    Sci Total Environ; 2017 Dec; 609():906-915. PubMed ID: 28783903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil carbon dioxide emissions from a rubber plantation on tropical peat.
    Wakhid N; Hirano T; Okimoto Y; Nurzakiah S; Nursyamsi D
    Sci Total Environ; 2017 Mar; 581-582():857-865. PubMed ID: 28088548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Post-fire carbon dynamics in the tropical peat swamp forests of Brunei reveal long-term elevated CH
    Lupascu M; Akhtar H; Smith TEL; Sukri RS
    Glob Chang Biol; 2020 Sep; 26(9):5125-5145. PubMed ID: 32475055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon accumulation of tropical peatlands over millennia: a modeling approach.
    Kurnianto S; Warren M; Talbot J; Kauffman B; Murdiyarso D; Frolking S
    Glob Chang Biol; 2015 Jan; 21(1):431-44. PubMed ID: 25044171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Bornean peat swamp forest is a net source of carbon dioxide to the atmosphere.
    Tang ACI; Melling L; Stoy PC; Musin KK; Aeries EB; Waili JW; Shimizu M; Poulter B; Hirata R
    Glob Chang Biol; 2020 Dec; 26(12):6931-6944. PubMed ID: 32881141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon dioxide and methane fluxes in drained tropical peat before and after hydrological restoration.
    Jauhiainen J; Limin S; Silvennoinen H; Vasander H
    Ecology; 2008 Dec; 89(12):3503-14. PubMed ID: 19137955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fire Distribution in Peninsular Malaysia, Sumatra and Borneo in 2015 with Special Emphasis on Peatland Fires.
    Miettinen J; Shi C; Liew SC
    Environ Manage; 2017 Oct; 60(4):747-757. PubMed ID: 28674917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soil CO
    Busman NA; Melling L; Goh KJ; Imran Y; Sangok FE; Watanabe A
    Sci Total Environ; 2023 Feb; 858(Pt 2):159973. PubMed ID: 36347298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Are secondary forests second-rate? Comparing peatland greenhouse gas emissions, chemical and microbial community properties between primary and secondary forests in Peninsular Malaysia.
    Dhandapani S; Ritz K; Evers S; Yule CM; Sjögersten S
    Sci Total Environ; 2019 Mar; 655():220-231. PubMed ID: 30471590
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands.
    Ballhorn U; Siegert F; Mason M; Limin S
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21213-8. PubMed ID: 19940252
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Impact of Tropical Peat Fire on Termite Assemblage in Sumatra, Indonesia: Reduced Complexity of Community Structure and Survival Strategies.
    Neoh KB; Bong LJ; Muhammad A; Itoh M; Kozan O; Takematsu Y; Yoshimura T
    Environ Entomol; 2016 Oct; 45(5):1170-1177. PubMed ID: 27550162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition.
    Flanagan NE; Wang H; Winton S; Richardson CJ
    Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sea level rise and climate change acting as interactive stressors on development and dynamics of tropical peatlands in coastal Sumatra and South Borneo since the Last Glacial Maximum.
    Hapsari KA; Jennerjahn T; Nugroho SH; Yulianto E; Behling H
    Glob Chang Biol; 2022 May; 28(10):3459-3479. PubMed ID: 35312144
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In the line of fire: the peatlands of Southeast Asia.
    Page SE; Hooijer A
    Philos Trans R Soc Lond B Biol Sci; 2016 Jun; 371(1696):. PubMed ID: 27216508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of distance from canal and degradation history on peat bulk density in a degraded tropical peatland.
    Sinclair AL; Graham LLB; Putra EI; Saharjo BH; Applegate G; Grover SP; Cochrane MA
    Sci Total Environ; 2020 Jan; 699():134199. PubMed ID: 31522054
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys.
    Wedeux B; Dalponte M; Schlund M; Hagen S; Cochrane M; Graham L; Usup A; Thomas A; Coomes D
    Glob Chang Biol; 2020 Jul; 26(7):3947-3964. PubMed ID: 32267596
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.