These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 237756)
1. Inactivation of glyoxalase I from porcine erythrocytes and yeast by amino-group reagents. Mannervik B; Marmstål E; Ekwall K; Górna-Hall B Eur J Biochem; 1975 May; 53(2):327-33. PubMed ID: 237756 [TBL] [Abstract][Full Text] [Related]
2. Inhibition of mammalian glyoxalase I (lactoylglutathione lyase) by N-acylated S-blocked glutathione derivatives as a probe for the role of the N-site of glutathione in glyoxalase I mechanism. Al-Timari A; Douglas KT Biochim Biophys Acta; 1986 Mar; 870(1):160-8. PubMed ID: 3947646 [TBL] [Abstract][Full Text] [Related]
3. Chemical modification of tyrosine residues in glyoxalase I from yeast and human erythrocytes. Carrington SJ; Fetherbe D; Douglas KT Int J Biochem; 1989; 21(8):901-8. PubMed ID: 2684702 [TBL] [Abstract][Full Text] [Related]
4. Nonstereospecific substrate usage by glyoxalase I. Griffis CE; Ong LH; Buettner L; Creighton DJ Biochemistry; 1983 Jun; 22(12):2945-51. PubMed ID: 6347254 [TBL] [Abstract][Full Text] [Related]
5. Partial transition-state inhibitors of glyoxalase I from human erythrocytes, yeast and rat liver. Douglas KT; Gohel DI; Nadvi IN; Quilter AJ; Seddon AP Biochim Biophys Acta; 1985 May; 829(1):109-18. PubMed ID: 3888271 [TBL] [Abstract][Full Text] [Related]
6. Probing the active site of glyoxalase I from human erythrocytes by use of the strong reversible inhibitor S-p-bromobenzylglutathione and metal substitutions. Aronsson AC; Sellin S; Tibbelin G; Mannervik B Biochem J; 1981 Jul; 197(1):67-75. PubMed ID: 7317034 [TBL] [Abstract][Full Text] [Related]
7. Assay of glyoxalase I in blood. Brandt RB; Waters MG; Laux JE Biochem Med; 1983 Dec; 30(3):305-12. PubMed ID: 6360161 [TBL] [Abstract][Full Text] [Related]
8. Comparison of glyoxalase I purified from yeast (Saccharomyces cerevisiae) with the enzyme from mammalian sources. Marmstål E; Aronsson AC; Mannervik B Biochem J; 1979 Oct; 183(1):23-30. PubMed ID: 393249 [TBL] [Abstract][Full Text] [Related]
9. Immunological comparison of glyoxalase I from yeast and mammals and quantitative determination of the enzyme in human tissues by radioimmunoassay. Larsen K; Aronsson AC; Marmstål E; Mannervik B Comp Biochem Physiol B; 1985; 82(4):625-38. PubMed ID: 3937656 [TBL] [Abstract][Full Text] [Related]
10. pH Dependence of the inhibition of yeast glyoxalase I by porphyrins. Douglas KT; Sharif JG Biochim Biophys Acta; 1983 Oct; 748(2):184-93. PubMed ID: 6354270 [TBL] [Abstract][Full Text] [Related]
11. Reversal of the reaction catalyzed by glyoxalase I. Calculation of the equilibrium constant for the enzymatic reaction. Sellin S; Mannervik B J Biol Chem; 1983 Jul; 258(14):8872-5. PubMed ID: 6863314 [TBL] [Abstract][Full Text] [Related]
12. Optimization of efficiency in the glyoxalase pathway. Creighton DJ; Migliorini M; Pourmotabbed T; Guha MK Biochemistry; 1988 Sep; 27(19):7376-84. PubMed ID: 3207683 [TBL] [Abstract][Full Text] [Related]
13. Effect of reductones on glyoxalase I1. Iio M; Okabe K; Omura H J Nutr Sci Vitaminol (Tokyo); 1976; 22(1):53-61. PubMed ID: 784919 [TBL] [Abstract][Full Text] [Related]
14. Reinvestigation of the role of thiol groups of glyoxalase I purified from yeast (Saccharomyces cerevisiae). Caccuri AM; Risitano A; Marmocchi F; Venardi G; Aureli G; Petruzzelli R; Desideri A Biochim Biophys Acta; 1993 Sep; 1202(1):157-60. PubMed ID: 8373819 [TBL] [Abstract][Full Text] [Related]
15. Fluorescence and nuclear relaxation enhancement studies of the binding of glutathione derivatives to manganese-reconstituted glyoxalase I from human erythrocytes. A model for the catalytic mechanism of the enzyme involving a hydrated metal ion. Sellin S; Eriksson LE; Mannervik B Biochemistry; 1982 Sep; 21(20):4850-7. PubMed ID: 7138835 [TBL] [Abstract][Full Text] [Related]
16. Effects of pH and thiols on the kinetics of yeast glyoxalase I. An evaluation of the random pathway mechanism. Vander Jagt DL; Daub E; Krohn JA; Han LP Biochemistry; 1975 Aug; 14(16):3669-75. PubMed ID: 240387 [TBL] [Abstract][Full Text] [Related]
17. Investigation on glyoxalase I inhibitors. Barnard JF; Honek JF Biochem Biophys Res Commun; 1989 Nov; 165(1):118-24. PubMed ID: 2686643 [TBL] [Abstract][Full Text] [Related]
18. Binding of the competitive inhibitor S-(p-bromobenzyl)-glutathione to glyoxalase I from yeast. Marmstal E; Mannervik B FEBS Lett; 1979 Jun; 102(1):162-4. PubMed ID: 378697 [No Abstract] [Full Text] [Related]
19. Involvement of arginine residues in glutathione binding to yeast glyoxalase I. Schasteen CS; Reed DJ Biochim Biophys Acta; 1983 Jan; 742(2):419-25. PubMed ID: 6337639 [TBL] [Abstract][Full Text] [Related]
20. Studies on aspartase. II. Role of sulfhydryl groups in aspartase from Escherichia coli. Mizuta K; Tokushige M Biochim Biophys Acta; 1975 Sep; 403(1):221-31. PubMed ID: 240429 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]