BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 23775732)

  • 1. Transplantation tolerance.
    Brinkman C; Burrell B; Scalea J; Bromberg JS
    Methods Mol Biol; 2013; 1034():85-101. PubMed ID: 23775732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composite tissue transplantation.
    Brandacher G
    Methods Mol Biol; 2013; 1034():103-15. PubMed ID: 23775733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of cytokine polymorphisms in rejection after solid organ transplantation.
    Marshall SE; Welsh KI
    Genes Immun; 2001 Oct; 2(6):297-303. PubMed ID: 11607784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thoracic organ transplantation: laboratory methods.
    Patel JK; Kobashigawa JA
    Methods Mol Biol; 2013; 1034():127-43. PubMed ID: 23775735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. What can we learn from the transcriptional characterization of spontaneously tolerant transplant recipients?
    Danger R; Racapé M; Soulillou JP; Brouard S
    Curr Opin Organ Transplant; 2010 Aug; 15(4):435-40. PubMed ID: 20616726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The common gammac-cytokines and transplantation tolerance.
    Li X
    Cell Mol Immunol; 2004 Jun; 1(3):167-72. PubMed ID: 16219163
    [TBL] [Abstract][Full Text] [Related]  

  • 7. B cells in operational tolerance.
    Chesneau M; Danger R; Soulillou JP; Brouard S
    Hum Immunol; 2018 May; 79(5):373-379. PubMed ID: 29458071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a novel biomarker gene set with sensitivity and specificity for distinguishing between allograft rejection and tolerance.
    Xie L; Ichimaru N; Morita M; Chen J; Zhu P; Wang J; Urbanellis P; Shalev I; Nagao S; Sugioka A; Zhong L; Nonomura N; Takahara S; Levy GA; Li XK
    Liver Transpl; 2012 Apr; 18(4):444-54. PubMed ID: 22162188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic separation of the transplantation tolerance and autoimmune phenotypes in NOD mice.
    Pearson T; Markees TG; Serreze DV; Pierce MA; Wicker LS; Peterson LB; Shultz LD; Mordes JP; Rossini AA; Greiner DL
    Rev Endocr Metab Disord; 2003 Sep; 4(3):255-61. PubMed ID: 14501176
    [No Abstract]   [Full Text] [Related]  

  • 10. Clinical significance of regulatory T-cell-related gene expression in peripheral blood after renal transplantation.
    Iwase H; Kobayashi T; Kodera Y; Miwa Y; Kuzuya T; Iwasaki K; Haneda M; Katayama A; Takeda A; Morozumi K; Watarai Y; Uchida K; Nakao A
    Transplantation; 2011 Jan; 91(2):191-8. PubMed ID: 21157405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring the operationally tolerant liver allograft recipient.
    Castellaneta A; Thomson AW; Nayyar N; de Vera M; Mazariegos GV
    Curr Opin Organ Transplant; 2010 Feb; 15(1):28-34. PubMed ID: 19890211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term follow-up of donor chimerism and tolerance after human liver transplantation.
    Ayala R; Grande S; Albizua E; Crooke A; Meneu JC; Moreno A; Pérez B; Gilsanz F; Moreno E; Martínez-Lopez J
    Liver Transpl; 2009 Jun; 15(6):581-91. PubMed ID: 19479801
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Paradoxical early upregulation of intragraft Th1 cytokines is associated with graft acceptance following donor-specific blood transfusion.
    Koshiba T; Giulietti A; Van Damme B; Overbergh L; Rutgeerts O; Kitade H; Waer M; Mathieu C; Pirenne J
    Transpl Int; 2003 Mar; 16(3):179-85. PubMed ID: 12664213
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical, immunological, and pathological aspects of operational tolerance after pediatric living-donor liver transplantation.
    Koshiba T; Li Y; Takemura M; Wu Y; Sakaguchi S; Minato N; Wood KJ; Haga H; Ueda M; Uemoto S
    Transpl Immunol; 2007 Feb; 17(2):94-7. PubMed ID: 17306739
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In pursuit of the ultimate: the initial Ahmedabad journey toward transplantation tolerance.
    Trivedi HL; Vanikar AV; Modi PR; Shah PR; Shah VR; Trivedi VB
    Transplant Proc; 2007 Apr; 39(3):653-7. PubMed ID: 17445566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microarrays: monitoring for transplant tolerance and mechanistic insights.
    Zarkhin V; Sarwal MM
    Clin Lab Med; 2008 Sep; 28(3):385-410, vi. PubMed ID: 19028259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minimization of immunosuppression after lung transplantation: current trends.
    McShane PJ; Garrity ER
    Transpl Int; 2009 Jan; 22(1):90-5. PubMed ID: 18817530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous blockade of co-stimulatory signals, CD28 and ICOS, induced a stable tolerance in rat heart transplantation.
    Guo L; Fujino M; Kimura H; Funeshima N; Kitazawa Y; Harihara Y; Tezuka K; Makuuchi M; Suzuki S; Li XK
    Transpl Immunol; 2003; 12(1):41-8. PubMed ID: 14551031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular and functional biomarkers of clinical transplant tolerance.
    Mathew JM; Ansari MJ; Gallon L; Leventhal JR
    Hum Immunol; 2018 May; 79(5):322-333. PubMed ID: 29374560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New evidence for a role of allograft accommodation in long-term tolerance.
    Heslan JM; Renaudin K; Thebault P; Josien R; Cuturi MC; Chiffoleau E
    Transplantation; 2006 Nov; 82(9):1185-93. PubMed ID: 17102770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.